已知點(diǎn)M(1,0),N(0,1),P(2,1),Q(1,y),且
MN
PQ
,求y的值,并求出向量
PQ
的坐標(biāo).
考點(diǎn):平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:由點(diǎn)的坐標(biāo)求出兩個(gè)向量
MN
,
PQ
的坐標(biāo),然后直接利用向量共線的坐標(biāo)表示列式求得y的值,則向量
PQ
的坐標(biāo)可求.
解答: 解:∵點(diǎn)M(1,0),N(0,1),P(2,1),Q(1,y),
MN
=(-1,1),
PQ
=(-1,y-1).
MN
PQ
,
∴(-1)×(y-1)-1×(-1)=0,
解得y=2.
PQ
=(-1,1).
點(diǎn)評:平行問題是一個(gè)重要的知識(shí)點(diǎn),在高考題中常常出現(xiàn),常與向量的模、向量的坐標(biāo)表示等聯(lián)系在一起,要特別注意垂直與平行的區(qū)別.若
a
=(a1,a2),
b
=(b1,b2),則
a
b
?a1a2+b1b2=0,
a
b
?a1b2-a2b1=0.是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

乒乓球運(yùn)動(dòng)員10人,其中男女運(yùn)動(dòng)員各5人,從這10名運(yùn)動(dòng)員中選出4人進(jìn)行男女混合雙打比賽,選法種數(shù)為( 。
A、(A
 
2
5
2
B、(C
 
2
5
2
C、(C
 
2
5
2•A
 
2
4
D、(C
 
2
5
2•A
 
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的各棱長都等于2,D在AC1上,F(xiàn)為BB1中點(diǎn),且FD⊥AC1
(1)求證:DF∥平面ABC; 
(2)求二面角F-AC1-C的余弦值; 
(3)求點(diǎn)C1到平面AFC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,求此函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面α于B,DC?α,且CD⊥AC于C,求證:平面ACD⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…log3an,若cn=-
1
bn
,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱柱ABCD-A1B1C1D1中,平面A1ABB1⊥平面ABCD,且∠ABC=
π
2

(1)求證:BC∥平面AB1C1
(2)求證:平面A1ABB1⊥平面AB1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
x﹙x-1﹚﹙x≥0 ﹚
-x﹙x+1﹚ ﹙x<0﹚
的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2an-2n+1+2(n為正整數(shù)).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log2a1+log2
a2
2
+…+log2
an
n
,求數(shù)列{
1
bn
}的前n項(xiàng)和Tn
(3)記cn=
Sn
an
.證明:?r,s∈N*,且r<s,都有cr<cs

查看答案和解析>>

同步練習(xí)冊答案