11.已知焦點在 x 軸上的橢圓$\frac{x^2}{m}$+$\frac{y^2}{3}$=1的離心率為$\frac{1}{2}$,則 m=( 。
A.6B.$\sqrt{6}$C.4D.2

分析 通過橢圓方程,利用橢圓的離心率列出方程求解m即可.

解答 解:焦點在 x 軸上的橢圓$\frac{x^2}{m}$+$\frac{y^2}{3}$=1,可得a=$\sqrt{m}$,c=$\sqrt{m-3}$,
橢圓的離心率為$\frac{1}{2}$,可得:$\frac{\sqrt{m-3}}{\sqrt{m}}$=$\frac{1}{2}$,解得m=4.
故選:C.

點評 本題考查橢圓的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知實數(shù)a>0,b>0,若$\sqrt{2}$是4a與2b的等比中項,則下列不對的說法是( 。
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.下列4個命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x-6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當0≤α≤π時,若8x2-(8sinα)x+cos2α≥0對?x∈R恒成立,則α的取值范圍是0≤α≤$\frac{π}{6}$.
其中真命題的序號是②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知{an}是等差數(shù)列,Sn為其前n項和,若a6=5,S4=12a4,則公差d的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.(1)已知a,b是正實數(shù),求證:$\frac{a}{\sqrt}+\frac{\sqrt{a}}$≥$\sqrt{a}+\sqrt$.
(2)已知:A,B都是銳角,且A+B≠90°,(1+tanA)(1+tanB)=2,求證:A+B=45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an},{bn}滿足a1=2,b1=4,且 2bn=an+an +1,an+12=bnbn+1
(Ⅰ)求 a 2,a3,a4 及b2,b3,b4;
(Ⅱ)猜想{an },{bn} 的通項公式,并證明你的結論;
(Ⅲ)證明:對所有的 n∈N*,$\frac{{a}_{1}}{_{1}}$•$\frac{{a}_{3}}{_{3}}$•…•$\frac{{a}_{2n-1}}{_{2n-1}}$<$\sqrt{\frac{_{n}-{a}_{n}}{_{n}+{a}_{n}}}$<$\sqrt{2}$sin$\frac{1}{{\sqrt{2\sqrt{b_n}-1}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設f(x)是定義在R上的增函數(shù),且對任意x,都有f(-x)+f(x)=0恒成立,如果實數(shù)m,n滿足不等式f(m2-6m+21)+f(n2-8n)<0,則m2+n2的取值范圍是( 。
A.(9,25)B.(3,7)C.(9,49)D.(13,49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在極坐標系中,曲線ρ=4sin(θ-$\frac{π}{4}$)(ρ∈R)關于( 。
A.直線θ=$\frac{π}{3}$成軸對稱B.直線θ=$\frac{3π}{4}$成軸對稱
C.點(2,$\frac{π}{3}$)成中心對稱D.極點成中心對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的正半軸重合,若圓C的極坐標方程為ρ=4cosθ,則圓心C的直角坐標為(2,0).

查看答案和解析>>

同步練習冊答案