(本小題滿分14分)在數(shù)列中,是數(shù)列前項和,,當
(I)求證:數(shù)列是等差數(shù)列;
(II)設求數(shù)列的前項和;
(III)是否存在自然數(shù),使得對任意自然數(shù),都有成立?若存在,求出的最大值;若不存在,請說明理由.
(I)見解析(II)(III)存在,的最大值為,理由見解析
【解析】
試題分析:(I)由已知得,當時,,
所以,又因為,
所以數(shù)列是以1為首項,2為公差的等差數(shù)列. ……4分
(II )由(I)知,,
所以.
所以, ……6分
所以
. ……8分
(III)令,顯然在上是增函數(shù),
所以當時,取得最小值,
依題意可知,要使得對任意,都有,
只要,即,所以,
因為所以的最大值為. ……14分
考點:本小題主要考查等差數(shù)列的證明,裂項法求和、數(shù)列與不等式的綜合應用問題,考查學生綜合分析問題、解決問題的能力和邏輯思維能力和運算求解能力.
點評:解決此類問題要抓住一個中心——函數(shù),兩個密切聯(lián)系:一是數(shù)列和函數(shù)之間的密切聯(lián)系,數(shù)列的通項公式是數(shù)列問題的核心,函數(shù)的解析式是研究函數(shù)問題的基礎;二是方程、不等式與函數(shù)的聯(lián)系,利用它們之間的對應關系進行靈活處理.
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com