分析 ①,在△ABC若A<B⇒a<b⇒2RsinA<2RsinB⇒sinA<sinB;
②,函數(shù)f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$中sinx=1,及x=2kπ+$\frac{π}{2}$,定義域不關(guān)于原點(diǎn)對稱,故為既不是奇函數(shù)又不是偶函數(shù);
③,由函數(shù)y=|tanx|的周期為π,得函數(shù)y=|tan(2x-$\frac{π}{3}$)|的周期;
④,如圖在同一坐標(biāo)系中,畫出函數(shù)y=sinx與函數(shù)y=-lnx+1的圖象,可得有三個公共點(diǎn).
解答 解:對于①,在△ABC若A<B⇒a<b⇒2RsinA<2RsinB⇒sinA<sinB,故正確;
對于②,函數(shù)f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$中sinx=1,及x=2kπ+$\frac{π}{2}$,定義域不關(guān)于原點(diǎn)對稱,故為既不是奇函數(shù)又不是偶函數(shù),故錯;
對于③,由函數(shù)y=|tanx|的周期為π,得函數(shù)y=|tan(2x-$\frac{π}{3}$)|的周期是$\frac{π}{2}$,故正確;
對于④,如圖在同一坐標(biāo)系中,畫出函數(shù)y=sinx與函數(shù)y=-lnx+1的圖象,可得有三個公共點(diǎn),故正確.
故答案為:①③④
點(diǎn)評 本題考查了命題真假的判斷,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4條 | B. | 3條 | C. | 2條 | D. | 無數(shù)條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 18 | C. | 9 | D. | 16 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 8 | C. | $\frac{8}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com