11.若一個(gè)集合中含有n個(gè)元素,則稱該集合為“n元集合”,已知集合A=$\{-2,\frac{1}{2},3,4\}$,則其“2元子集”的個(gè)數(shù)為(  )
A.6B.8C.9D.10

分析 根據(jù)題意,可以將原問(wèn)題轉(zhuǎn)化為組合問(wèn)題,即在-2、$\frac{1}{2}$、3、4四個(gè)元素中任取2個(gè),組成一個(gè)集合即可,由組合數(shù)公式計(jì)算可得答案.

解答 解:根據(jù)題意,要求集合A=$\{-2,\frac{1}{2},3,4\}$的“2元子集”的個(gè)數(shù),
可以在-2、$\frac{1}{2}$、3、4四個(gè)元素中任取2個(gè),組成一個(gè)集合即可,
有C42=6種取法,即可以有6個(gè)“2元子集”,
故選:A.

點(diǎn)評(píng) 本題考查排列、組合的簡(jiǎn)答應(yīng)用,關(guān)鍵是理解集合子集的概念以及題目所給出的“n元集合”的概念.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在一次購(gòu)物抽獎(jiǎng)活動(dòng)中,假設(shè)某10張券中有一等獎(jiǎng)券1張,二等獎(jiǎng)券3張,其余6張沒(méi)有獎(jiǎng),某顧客從此10張券中任抽2張,
(1)求該顧客中獎(jiǎng)的概率;
(2)設(shè)隨機(jī)變量X為顧客抽的中獎(jiǎng)券的張數(shù),求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在棱長(zhǎng)均相等的正三棱柱ABC-A1B1C1中,M,N,D分別是棱B1C1,C1C,BC的中點(diǎn).
(Ⅰ)求證:A1M∥平面AB1D;
(Ⅱ)求證:BN⊥平面A1MC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知等比數(shù)列{an}的公比q>1,a1+a4=18,a2•a3=32,則數(shù)列{an}的前8項(xiàng)和為( 。
A.514B.513C.512D.510

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.給出下列命題:
①在△ABC若A<B,則sinA<sinB;
②函數(shù)f(x)=$\sqrt{1-sinx}$+$\sqrt{sinx-1}$既是奇函數(shù)又是偶函數(shù);
③函數(shù)y=|tan(2x-$\frac{π}{3}$)|的周期是$\frac{π}{2}$;
④在同一坐標(biāo)系中,函數(shù)y=sinx的圖象與函數(shù)y=-lnx+1的圖象有三個(gè)公共點(diǎn).
其中正確的個(gè)數(shù)是①③④.(填出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a4=a2•a5,3a5+2a4=1,則Tn=a1a2…an的最大值為27.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若偶函數(shù)f(x)的定義域?yàn)閇a-4,a],奇函數(shù)$g(x)=\frac{{{2^x}-2b}}{{{x^2}+1}}$,則ab的值為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x≤0時(shí),f(x)=2x+x2,若存在正數(shù)a,b,使得當(dāng)x∈[a,b]時(shí),f(x)的值域?yàn)?[{\frac{1},\frac{1}{a}}]$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為( 。
A.$\frac{82}{3}$B.26C.80D.$\frac{80}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案