5.某公司的某種兒童玩具的成本為40元,出廠單價(jià)為60元,經(jīng)市場(chǎng)調(diào)研后作出調(diào)整,若經(jīng)銷商一次訂購量超過100個(gè)時(shí),每多訂購1個(gè),則每個(gè)玩具的出廠單價(jià)就降低0.02元,但不能低于50元.
(1)當(dāng)一次訂購量為多少時(shí),每個(gè)玩具的實(shí)際出廠單價(jià)恰好為50元?
(2)若一次訂購量為x個(gè)時(shí),每個(gè)玩具的實(shí)際出廠單價(jià)恰好為w元,寫出函數(shù)w=f(x)的表達(dá)式;并求出當(dāng)某經(jīng)銷商一次訂購500個(gè)玩具時(shí),該公司獲得的利潤是多少元?

分析 (1)由題意設(shè)每個(gè)零件的實(shí)際出廠價(jià)恰好降為50元時(shí),一次訂購量為x個(gè),則因此=100+$\frac{60-50}{0.02}$=600,解得即可,
(2)前100件單價(jià)為w,當(dāng)進(jìn)貨件數(shù)大于等于600件時(shí),w=50,則當(dāng)100<x<600時(shí),得到w為分段函數(shù),寫出解析式即可;
設(shè)銷售商的一次訂購量為x個(gè)時(shí),工廠獲得的利潤為L元,表示出L與x的函數(shù)關(guān)系式,然后令x=500即可得到對(duì)應(yīng)的利潤.

解答 解:(1)設(shè)每個(gè)零件的實(shí)際出廠價(jià)恰好降為50元時(shí),一次訂購量為x個(gè),則x=100+$\frac{60-50}{0.02}$=600,
∴當(dāng)一次訂購量為600時(shí),每個(gè)玩具的實(shí)際出廠單價(jià)恰好為50元,
(2)當(dāng)0<x≤100時(shí),w=60,
當(dāng)100<x<600時(shí),w=60-0.02(x-100)=62-$\frac{x}{50}$
當(dāng)x≥600時(shí),w=50,
∴w=f(x)=$\left\{\begin{array}{l}{60,0<x≤100}\\{62-\frac{x}{50},100<x<600}\\{50,x≥600}\end{array}\right.,其中x∈N*$,
設(shè)銷售商的一次訂購量為500個(gè)時(shí),工廠獲得的利潤為L元,
則L=(w-40)x=(62-$\frac{x}{50}$-40)x=22x-$\frac{{x}^{2}}{50}$,x∈N*,
∴當(dāng)x=500時(shí),L=6000,
∴當(dāng)某經(jīng)銷商一次訂購500個(gè)玩具時(shí),該公司獲得的利潤是6000元

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,實(shí)際問題的應(yīng)用,考查分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“x<0”是“x2>x”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如果實(shí)數(shù)x、y滿足關(guān)系$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{4x-y+4≥0}\end{array}\right.$,則(x-2)2+y2的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知x,y∈R,矩陣A=$[\begin{array}{l}{x}&{1}\\{y}&{o}\end{array}]$有一個(gè)屬于特征值-2的特征向量a=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
(1)求矩陣A;
(2)若矩陣$B=[{\begin{array}{l}1&2\\ 0&6\end{array}}]$,求A-1B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.三棱錐P-ABC的四個(gè)頂點(diǎn)都在半徑為5的球面上,底面ABC所在的小圓面積為16π,則該三棱錐的高的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.(理)在${({2x+\frac{1}{x^2}})^6}$的展開式中,常數(shù)項(xiàng)等于240.(結(jié)果用數(shù)值表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.對(duì)2000名學(xué)生進(jìn)行身體健康檢查,用分層抽樣的辦法抽取容量為200的樣本,已知樣本中女生比男生少6人,則該校共有男生( 。
A.1030人B.970人C.97人D.103人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為調(diào)查某社區(qū)年輕人的周末生活狀況,研究這一社區(qū)年輕人在周末的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)年輕人80人,得到下面的數(shù)據(jù)表:
休閑方式
性別
逛街上網(wǎng)合計(jì)
105060
101020
合計(jì)206080
(1)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的年輕男性,設(shè)調(diào)查的3人在這一時(shí)間段以上網(wǎng)為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“周末年輕人的休閑方式與性別有關(guān)系”?
參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(理科)定義:若各項(xiàng)為正實(shí)數(shù)的數(shù)列{an}滿足${a_{n+1}}=\sqrt{a_n}(n∈{N^*})$,則稱數(shù)列{an}為“算術(shù)平方根遞推數(shù)列”.
已知數(shù)列{xn}滿足${x_n}>0,n∈{N^*}$,且${x_1}=\frac{9}{2}$,點(diǎn)(xn+1,xn)在二次函數(shù)f(x)=2x2+2x的圖象上.
(1)試判斷數(shù)列{2xn+1}(n∈N*)是否為算術(shù)平方根遞推數(shù)列?若是,請(qǐng)說明你的理由;
(2)記yn=lg(2xn+1)(n∈N*),求證:數(shù)列{yn}是等比數(shù)列,并求出通項(xiàng)公式y(tǒng)n;
(3)從數(shù)列{yn}中依據(jù)某種順序自左至右取出其中的項(xiàng)${y_{n_1}},{y_{n_2}},{y_{n_3}},…$,把這些項(xiàng)重新組成一個(gè)新數(shù)列{zn}:${z_1}={y_{n_1}},{z_2}={y_{n_2}},{z_3}={y_{n_3}},…$.
若數(shù)列{zn}是首項(xiàng)為${z_1}={(\frac{1}{2})^{m-1}}$、公比為$q=\frac{1}{2^k}(m,k∈{N^*})$的無窮等比數(shù)列,且數(shù)列{zn}各項(xiàng)的和為$\frac{16}{63}$,求正整數(shù)k、m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案