已知公差為2的等差數(shù)列{an}的前n項和為Sn(n∈N*),且S3+S5=58.
(1)求數(shù)列{an}的通項公式;
(2)若{bn}為等比數(shù)列,且b1b10=
1
2
a2,記Tn=log3b1+log3b2+log3b3+…+log3b10,求T10的值.
考點:數(shù)列的求和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)直接利用等差數(shù)列的前n項和公式通過已知條件求出首項,即可求解通項公式.
(2)求出a2,得到b1b10的值,利用對數(shù)的性質化簡所求表達式,利用等比數(shù)列的性質求T10的和即可.
解答: 解:(1)設公差為d,由S3+S5=58,得3a1+3d+5a1+10d=8a1+13d=58…(2分)
∵d=2,∴a1=4,∴an=2n+2.n∈N*…(5分)
(2)由(1)知a2=6,所以b1b10=3.…(7分)
∴T10=log3b1+log3b2+log3b3+…+log3b10
=log3(b1•b10)+log3(b2•b9)+…+log3(b5•b6
=5log3(b1•b10)=5log33=5.…(10分)
點評:本題考查數(shù)列求和,等差數(shù)列以及等比數(shù)列的性質的應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=3x與y=-3-x的圖象關于( 。
A、x軸對稱
B、y軸對稱
C、直線y=x對稱
D、原點中心對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a5=4,a7=8,則a9=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(3,1),
b
=(1,3),
c
=(5,k),若(
a
-
c
)∥
b
,則k=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的虛軸長為6,焦距為10,則雙曲線的實軸長為(  )
A、8B、6C、4D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義域為R的奇函數(shù),且當x>0時,f(x)=x4
(1)求f(x)的解析式;
(2)設g(x)=
f(x)+1,x≥0
1,x<0
,求滿足g(1-x)>g(2x)的x的取值范圍;
(3)對任意的x∈[a,a+2],不等式f(a-x)+2f(x)≤0恒成立,試求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設S是一些向量構成的集合,a∈S,如果a的長度不小于S其余所有向量求和所得向量的長度,那么稱a是S中的一個長向量.對于S={a1,a2,…,an},n>2,已知S中的每一個向量都是長向量,證明:a1+a2+…+an=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=ln(x2+ax-a+1),有以下五個結論:
①f(x)既不是奇函數(shù)也不是偶函數(shù);
②f(x)有最小值;
③當a=0時,f(x)的定義域為R;
④當a=1時,f(x)的值域為R;
⑤若f(x)在[2,+∞)上單調遞增,則實數(shù)a的取值范圍是a≥-4.
其中正確的是
 
(把你認為正確結論的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x2+ax)ex在(-1,1)上是減函數(shù),則a的取值范圍是
 

查看答案和解析>>

同步練習冊答案