分析 根據(jù)二階矩陣與平面列向量的乘法,確定矩陣M,再求矩陣的逆矩陣.
解答 解:由題意知,$M[\begin{array}{l}2\\ 2\end{array}]=[\begin{array}{l}-1-\sqrt{3}\\-1+\sqrt{3}\end{array}]$,即$[\begin{array}{l}2cosα-2sinα\\ 2sinα+2cosα\end{array}]=[\begin{array}{l}-1-\sqrt{3}\\-1+\sqrt{3}\end{array}]$----------------------(2分)
所以$\left\{\begin{array}{l}2cosα-2sinα=-1-\sqrt{3}\\ 2sinα+2cosα=-1+\sqrt{3}\end{array}\right.$解得$\left\{\begin{array}{l}cosα=-\frac{1}{2}\\ sinα=\frac{{\sqrt{3}}}{2}\end{array}\right.$從而$M=[\begin{array}{l}-\frac{1}{2}-\frac{{\sqrt{3}}}{2}\\ \frac{{\sqrt{3}}}{2}-\frac{1}{2}\end{array}]$-----------(6分)
由${M^{-1}}M=[\begin{array}{l}1\;\;\;\;\;0\\ 0\;1\end{array}]$,解得${M^{-1}}=[{\begin{array}{l}{-\frac{1}{2}}&{\frac{{\sqrt{3}}}{2}}\\{-\frac{{\sqrt{3}}}{2}}&{-\frac{1}{2}}\end{array}}]$.----------------------------------------(10分)
點評 本題考查矩陣的求法,考查矩陣的逆矩陣,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | 2 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{4}{5}$ | B. | -$\frac{3}{5}$ | C. | 0 | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{6}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{{\sqrt{2}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{x^2}{9}+\frac{y^2}{16}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | ||
C. | $\frac{x^2}{25}+\frac{y^2}{16}=1$或$\frac{x^2}{16}+\frac{y^2}{25}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{25}=1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com