2.已知函數(shù)f(x)=|log2|1-x||,若函數(shù)g(x)=f2(x)+af(x)+2b有6個(gè)不同的零點(diǎn),則這6個(gè)零點(diǎn)之和為( 。
A.7B.6C.$\frac{11}{2}$D.$\frac{9}{2}$

分析 先作出函數(shù)f(x)=|log2|x-1||的圖象,令t=f(x),方程[f(x)]2+af(x)+2b=0轉(zhuǎn)化為:t2+at+2b=0,再方程[f(x)]2+af(x)+2b=0有6個(gè)不同的實(shí)數(shù)解,運(yùn)用圖象關(guān)于直線x=1對稱,這6個(gè)解兩兩關(guān)于直線x=1對稱,計(jì)算即可得到所求和.

解答 解:作出函數(shù)f(x)=|log2|x-1||的圖象,
可得圖象關(guān)于直線x=1對稱,
∵函數(shù)g(x)=f2(x)+af(x)+2b有6個(gè)不同的零點(diǎn),
即方程[f(x)]2+af(x)+2b=0有6個(gè)不同的實(shí)數(shù)解,
可得這6個(gè)解兩兩關(guān)于直線x=1對稱,
可得它們的和為2×3=6.
故選:B.

點(diǎn)評 本題考查函數(shù)的零點(diǎn)個(gè)數(shù)問題的解法,注意運(yùn)用函數(shù)的對稱性,考查數(shù)形結(jié)合思想方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$則$\frac{y}{x}$的取值范圍是  (  )
A.$[{\frac{2}{3},2}]$B.$[{\frac{1}{2},\frac{3}{2}}]$C.$[{\frac{3}{2},2}]$D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若不等式|x-t|<1成立的必要條件是1<x≤4,則實(shí)數(shù)t的取值范圍是(  )
A.[2,3]B.(2,3]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,過F的直線交拋物線C于A,B兩點(diǎn),以線段AB為直徑的圓與拋物線C的準(zhǔn)線切于$M(-\frac{p}{2},3)$,且△AOB的面積為$\sqrt{13}$,則拋物線C的方程為y2=4x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,則f(2+log23)=(  )
A.8B.12C.16D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.2017年某市開展了“尋找身邊的好老師”活動,市六中積極行動,認(rèn)真落實(shí),通過微信關(guān)注評選“身邊的好老師”,并對選出的班主任工作年限不同的五位“好老師”的班主任的工作年限和被關(guān)注數(shù)量進(jìn)行了統(tǒng)計(jì),得到如下數(shù)據(jù):
班主任工作年限x(單位:年)4681012
被關(guān)注數(shù)量y(單位:百人)1020406050
(1)若”好老師”的被關(guān)注數(shù)量y與其班主任的工作年限x滿足線性回歸方程,試求回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并就此分析:“好老師”的班主任工作年限為15年時(shí)被關(guān)注的數(shù)量;
(2)若用$\frac{y_i}{x_i}$(i=1,2,3,4,5)表示統(tǒng)計(jì)數(shù)據(jù)時(shí)被關(guān)注數(shù)量的“即時(shí)均值”(四舍五入到整數(shù)),從“即時(shí)均值”中任選2組,求這2組數(shù)據(jù)之和小于8的概率.(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A={x|x>-1,x∈R},集合B={x|x<2,x∈R},則A∩B=(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,2cos2A+3=4cosA.
(1)求角A的大。
(2)若a=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對500名該手機(jī)用戶(200名女性,300名男性)進(jìn)行調(diào)查,對手機(jī)進(jìn)行評分,評分的頻數(shù)分布表如下:
女性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(1)完成下列頻率分布直方圖,并指出女性用戶和男性用戶哪組評分更穩(wěn)定(不計(jì)算具體值,給出結(jié)論即可);

(2)根據(jù)評分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評分不低于80分的用戶中任意抽取2名用戶,求兩名用戶中評分都小于90分的概率.

查看答案和解析>>

同步練習(xí)冊答案