已知橢圓的兩個焦點,且橢圓短軸的兩個端點與F2構(gòu)成正三角形.

(1)求橢圓的方程;

(2)過點(1,0)且與坐標軸不平行的直線l與橢圓交于不同兩點P、Q,若在x軸上存在定點E(m,0),使恒為定值,求m的值.

答案:
解析:

  

  (2)設(shè)直線的斜率為,則的方程為

   消得   5分

  設(shè),則由韋達定理得

    7分

  則

  ∴

  =

 。  13分

  要使上式為定值須,

  得時,為定值  14分


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點F1(-
3
,0),F2 (
3
,0)
,且橢圓短軸的兩個端點與F2構(gòu)成正三角形.
(I)求橢圓的方程;
(Ⅱ)過點(1,0)且與坐標軸不平行的直線l與橢圓交于不同兩點P、Q,若在x軸上存在定點E(m,0),使
PE
QE
恒為定值,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點為F1(-
5
,0)
,F2(
5
,0)
,M是橢圓上一點,若
MF1
MF2
=0
|
MF1
|•|
MF2
|=8
,則該橢圓的方程是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點是(-3,0),(3,0),且點(0,2)在橢圓上,則橢圓的標準方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點將長軸三等分,焦點到相應準線的距離為8,則此橢圓的長軸長為
6
6

查看答案和解析>>

同步練習冊答案