已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log3x,則f(-
3
)
=( 。
分析:利用函數(shù)是奇函數(shù),得到f(-
3
)
=-f(
3
),利用條件求f(
3
)即可.
解答:解:∵f(x)是奇函數(shù),∴f(-
3
)
=-f(
3
),
又當(dāng)x>0時(shí),f(x)=log3x,
∴f(
3
)=log3
3
=
1
2

f(-
3
)
=-f(
3
)=-
1
2

故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性的應(yīng)用,利用奇偶性的性質(zhì)將f(-
3
)
轉(zhuǎn)化為f(
3
)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知f(x)是奇函數(shù),且x<0時(shí),f(x)=cosx+sin2x,則當(dāng)x>0時(shí),f(x)的表達(dá)式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是奇函數(shù),當(dāng)x>0時(shí)f(x)=-x(1+x),當(dāng)x<0時(shí)f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),且f(2-x)=f(x),當(dāng)x∈[2,3]時(shí),f(x)=log2(x-1),則當(dāng)x∈[1,2]時(shí),f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)-g(x)=x3+x2+x.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x,則f(-
1
2
)
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案