3.如圖,AT切⊙O于T,若AT=6,AE=3,AD=4,DE=2,則BC等于( 。
A.3B.4C.6D.8

分析 利用AT為⊙O的切線,求出AT,證明△EAD∽△CAB,可得$\frac{DE}{BC}=\frac{AE}{AC}$,即可求出BC.

解答 解:∵AT為⊙O的切線,∴AT2=AD•AC.
∵AT=6,AD=4,∴AC=9.
∵∠ADE=∠B,∠EAD=∠CAB,
∴△EAD∽△CAB,即$\frac{DE}{BC}=\frac{AE}{AC}$,
∴BC=$\frac{DE•AC}{AE}$=$\frac{2×9}{3}$=6.
故選:C.

點評 本題考查切割線定理,考查三角形相似的判斷與性質(zhì),考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖1,在平行四邊形ABCD中,AB=2AD,E,F(xiàn)分別為AB,CD的中點,沿EF將四邊形AEFD折起到新位置變?yōu)樗倪呅蜛′EFD′,使A′B=A′F(如圖2所示).
(1)證明:A′E⊥BF;
(2)若∠BAD=60°,A′E=$\sqrt{2}$A'B=2,求二面角A′-EF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,在三棱錐S-ABC中,底面ABC為等邊三角形,SA=SB=$\sqrt{10}$,AB=2,平面SAB⊥平面ABC,則SC與平面ABC所成角的大小是60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在空間直角坐標系中,$\overrightarrow{i}$=(1,0,0),$\overrightarrow{j}$=(0,1,0),$\overrightarrow{k}$=(0,0,1),則與$\overrightarrow{i}$,$\overrightarrow{j}$,$\overrightarrow{k}$所成角都相等的單位向量為( 。
A.(1,1,1)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)
C.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.不等式組$\left\{\begin{array}{l}-2{x^2}+x+1<0\\(x-1)(x-2)(x-3)>0\end{array}\right.$的解集是( 。
A.(-∞,$\frac{1}{2}$)∪(1,2)B.(1,2)∪(3,+∞)C.(-∞,$\frac{1}{2}$)∪(1,+∞)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,AO⊥平面BOC,∠OAB=30°,△AOC與△AOB全等,且二面角B-AO-C是直二面角,動點P在線段AB上,則CP與平面AOB所成角的正切的最大值為( 。
A.1B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.非零向量$\overrightarrow{m}$,$\overrightarrow{n}$的夾角的余弦值為$\frac{1}{3}$,且4|$\overrightarrow{m}$|=3|$\overrightarrow{n}$|,若$\overrightarrow{n}$⊥(t$\overrightarrow{m}$+$\overrightarrow{n}$),則實數(shù)t為( 。
A.4B.-4C.$\frac{4}{9}$D.-$\frac{4}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.經(jīng)調(diào)查統(tǒng)計,在某十字路中紅亮起時排隊等候的車輛數(shù)及相應概率如下:
排隊車輛數(shù)0123≥4
概率x0.30.30.20.1
則該十字路口紅燈亮起時至多有2輛車排隊等候的概率是( 。
A.0.7B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設a,b,c是正整數(shù),且a∈[70,80),b∈[80,90),c∈[90,100],當數(shù)據(jù)a,b,c的方差最小時,a+b+c的值為( 。
A.252或253B.253或254C.254或255D.267或268

查看答案和解析>>

同步練習冊答案