【題目】記函數(shù)的定義域?yàn)?/span>D. 如果存在實(shí)數(shù)、使得對(duì)任意滿

x恒成立,則稱函數(shù).

1)設(shè)函數(shù),試判斷是否為函數(shù),并說(shuō)明理由;

2)設(shè)函數(shù),其中常數(shù),證明: 函數(shù);

3)若是定義在上的函數(shù),且函數(shù)的圖象關(guān)于直線m為常數(shù))對(duì)稱,試判斷是否為周期函數(shù)?并證明你的結(jié)論.

【答案】(1) 函數(shù)(2)見(jiàn)解析(3) 函數(shù)為周期函數(shù)

【解析】試題分析: 求出的定義域, 對(duì)任意恒成立轉(zhuǎn)化成對(duì)任意恒成立,解出,使得

函數(shù)只需證明存在實(shí)數(shù), 使得當(dāng)時(shí), 恒成立,化簡(jiǎn)求得, ,滿足條件圖象關(guān)于直線對(duì)稱,結(jié)合,整體換元得,從而證明結(jié)論

解析1函數(shù)

理由如下: 的定義域?yàn)?/span>,

只需證明存在實(shí)數(shù), 使得對(duì)任意恒成立.

,即.

所以對(duì)任意恒成立.

從而存在,使對(duì)任意恒成立.

所以函數(shù).

2的定義域?yàn)?/span>,只需證明存在實(shí)數(shù), 使得當(dāng)時(shí),

恒成立,即恒成立.

所以,

化簡(jiǎn)得 .

所以, . 因?yàn)?/span>,可得, ,

即存在實(shí)數(shù) 滿足條件,從而函數(shù).

3)函數(shù)的圖象關(guān)于直線為常數(shù))對(duì)稱,

所以 1),

又因?yàn)?/span> 2),

所以當(dāng)時(shí),

由(1

由(2 3

所以

(取由(3)得)

再利用(3)式, .

所以為周期函數(shù),其一個(gè)周期為.

當(dāng)時(shí),即,又

所以為常數(shù). 所以函數(shù)為常數(shù)函數(shù),

是一個(gè)周期函數(shù).

綜上,函數(shù)為周期函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為、,過(guò)的直線交橢圓于,兩點(diǎn),若橢圓的離心率為的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)設(shè)不經(jīng)過(guò)橢圓的中心而平行于弦的直線交橢圓于點(diǎn),,設(shè)弦,的中點(diǎn)分別為.證明:,,三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若不等式的解集為,求的取值范圍;

(2)當(dāng)時(shí),解不等式;

(3)若不等式的解集為,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來(lái)”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到下表(單位:人):

經(jīng)常使用

偶爾或不用

合計(jì)

30歲及以下

70

30

100

30歲以上

60

40

100

合計(jì)

130

70

200

(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?

(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,

求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

從這5人中,在隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

參考公式: ,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列各題中,的什么條件?

1為自然數(shù),為整數(shù);

2;

3;

4:四邊形的一組對(duì)邊相等,:四邊形為平行四邊形;

5:四邊形的對(duì)角線互相垂直,:四邊形為菱形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)當(dāng)時(shí),求的單調(diào)區(qū)間和極值.

)若對(duì)于任意,都有成立,求的取值范圍 ;

)若證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》中有如下問(wèn)題:今有蒲生一日,長(zhǎng)三尺,莞生一日,長(zhǎng)1尺.蒲生日自半,莞生日自倍.問(wèn)幾何日而長(zhǎng)等?意思是:今有蒲第一天長(zhǎng)高3尺,莞第一天長(zhǎng)高1尺,以后蒲每天長(zhǎng)高前一天的一半,莞每天長(zhǎng)高前一天的2倍.若蒲、莞長(zhǎng)度相等,則所需時(shí)間為()

(結(jié)果精確到0.1.參考數(shù)據(jù):lg20.3010,lg30.4771.)

A.2.6B.2.2C.2.4D.2.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的一段圖象如圖所示.

(1)求函數(shù)的解析式;

(2)將函數(shù)的圖象向右平移個(gè)單位,得到的圖象,求直線

函數(shù)的圖象在內(nèi)所有交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠擬建一座平面圖為矩形,面積為,高度一定的三段污水處理池(如圖),由于受地形限制,其長(zhǎng)、寬都不超過(guò),如果池的外壁的建造費(fèi)單價(jià)為,池中兩道隔壁墻(與寬邊平行)的建造費(fèi)單價(jià)為,池底的建造費(fèi)單價(jià)為.設(shè)水池的長(zhǎng)為,總造價(jià)為.

1)求的表達(dá)式;

2)水池的長(zhǎng)與寬各是多少時(shí),總造價(jià)最低,并求出這個(gè)最低造價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案