【題目】已知m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且nβ,則下列敘述正確的是(
A.若m∥n,mα,則α∥β
B.若α∥β,mα,則m∥n
C.若m∥n,m⊥α,則α⊥β
D.若α∥β,m⊥n,則m⊥α

【答案】C
【解析】解:由m,n是兩條不同直線,α,β是兩個(gè)不同的平面,且nβ,知:
若m∥n,mα,則α與β相交或平行,故A錯(cuò)誤;
若α∥β,mα,則m與n平行或異面,故B錯(cuò)誤;
若m∥n,m⊥α,則由平面與平面垂直的判定定理得α⊥β,故C正確;
若α∥β,m⊥n,則m與α相交、平行或mα,故D錯(cuò)誤.
故選:C.
【考點(diǎn)精析】利用空間中直線與平面之間的位置關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個(gè)公共點(diǎn);直線與平面相交—有且只有一個(gè)公共點(diǎn);直線在平面平行—沒有公共點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】方程x3﹣3x+1=0的一個(gè)根在區(qū)間(k,k+1)(k∈N )內(nèi),則k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的共有(
①因?yàn)橹本是無限的,所以平面內(nèi)的一條直線就可以延伸到平面外去;
②兩個(gè)平面有時(shí)只相交于一個(gè)公共點(diǎn);
③分別在兩個(gè)相交平面內(nèi)的兩條直線如果相交,則交點(diǎn)只可能在兩個(gè)平面的交線上;
④一條直線與三角形的兩邊都相交,則這條直線必在三角形所在的平面內(nèi).
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于任意的直線l與平面α,在平面α內(nèi)必有直線m,使m與l(
A.平行
B.相交
C.垂直
D.互為異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x>-1},B={x||x|≥1},則“x∈A且xB”成立的充要條件是( )
A.-1<x≤1
B.x≤1
C.x>-1
D.-1<x<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x(x-2),則不等式xf(x)>0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x2﹣3x+2=0,x∈R },B={x|0<x<5,x∈N },則滿足條件ACB的集合C的個(gè)數(shù)為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax+2-1(a>0且a≠1)的圖象恒過的點(diǎn)是( )
A.(0,0)
B.(0,-1)
C.(-2,0)
D.(-2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a,b,c是不重合的直線,α,β是不重合的平面,以下結(jié)論正確的是(將正確的序號均填上).
①若a∥b,bα,則a∥α;
②若a⊥b,a⊥c,bα,ca,則a⊥α;
③若a⊥α,aβ,則α⊥β
④若a∥β,b∥β,aα,bα,則α∥β.

查看答案和解析>>

同步練習(xí)冊答案