7.《九章算術(shù)》是中國(guó)古代的數(shù)學(xué)專著,其中記載:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少減多,更相減損,求其等也.以等數(shù)約之.”此文闡述求兩個(gè)數(shù)的最大公約數(shù)的重要方法“更相減損術(shù)”.艾學(xué)習(xí)同學(xué)在使用“更相減損術(shù)”求588與315的最大公約數(shù)時(shí),計(jì)算過(guò)程第二步不小心破損導(dǎo)致過(guò)程不完整,“(588,315)→(•,315)→(273,42)→…”艾學(xué)習(xí)同學(xué)計(jì)算過(guò)程中破損處應(yīng)填寫(xiě)273.

分析 本題考查的知識(shí)點(diǎn)是最大公因數(shù)和更相減損術(shù),我們根據(jù)“以較大的數(shù)減較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù).繼續(xù)這個(gè)操作,直到所得的減數(shù)和差相等為止.”的原則,易求出答案.

解答 解:588-315=273,
315-273=42,
273-42=231,
231-42=189,
189-42=147,
147-42=105
105-42=63
63-42=21
42-21=21;
故588,315最大公因數(shù)為21;
故答案為:273.

點(diǎn)評(píng) 本題考查了更相減損術(shù)的方法和步驟:以較大的數(shù)減較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù).繼續(xù)這個(gè)操作,直到所得的減數(shù)和差相等為止.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某校與英國(guó)某高中結(jié)成友好學(xué)校,該校計(jì)劃選派3人作為交換生到英國(guó)進(jìn)行一個(gè)月的生活體驗(yàn),學(xué)校準(zhǔn)備從該校英語(yǔ)興趣小組的6名同學(xué)中選派,已知英語(yǔ)興趣小組中男生有4人,女生有2人
(Ⅰ)求男生甲或女生乙被選的概率
(Ⅱ)記選派的3人中的女生人數(shù)為隨機(jī)變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖1,平面五邊形ABCFE是由邊長(zhǎng)為2的正方形ABCD與上底為1,高為$\sqrt{3}$的直角梯形組合而成,將五邊形ABCFE沿著CD折疊,得到圖2所示的空間幾何體,其中AF⊥CF.
(Ⅰ)證明:BD⊥平面AFC;
(Ⅱ)求二面角A-FB-C的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果{an}為遞增數(shù)列,則{an}的通項(xiàng)公式可以是( 。
A.an=-n+2(n∈N*)B.an=1+log3n(n∈N*)C.an=$\frac{1}{{2}^{n}}$(n∈N*)D.an=n2-3n(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知角θ的終邊經(jīng)過(guò)點(diǎn)P(x,3)(x<0),且cosθ=$\frac{x}{4}$,則x的值為( 。
A.$\sqrt{7}$B.5C.-5D.-$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知$\overrightarrow{a}$=(m,1),$\overrightarrow$=(1,-2).若 $\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)m=-$\frac{1}{2}$;若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù) m=2;若|$\overrightarrow{a}$|<|$\overrightarrow$|,則實(shí)數(shù)m的取值范圍是(-2,2),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.設(shè)|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2,∠AOB=60°,$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,且λ+μ=2(λ≥0,μ≥0),則$\overrightarrow{OA}$在$\overrightarrow{OP}$上的投影的取值范圍是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.三角形ABC是銳角三角形,若角θ終邊上一點(diǎn)P的坐標(biāo)為(sin A-cos B,cos A-sin B),則$\frac{sinθ}{|sinθ|}$+$\frac{cosθ}{|cosθ|}$+$\frac{tanθ}{|tanθ|}$的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=$\frac{1}{2}$-sin2x+$\sqrt{3}$sin xcosx的單調(diào)増區(qū)間為( 。
A.[2kπ-$\frac{π}{6}$,2kπ+$\frac{5π}{6}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$](k∈Z)D.[kπ-$\frac{π}{3}$,2kπ+$\frac{π}{6}$](k∈Z)

查看答案和解析>>

同步練習(xí)冊(cè)答案