甲、乙、丙三個(gè)人獨(dú)立地破譯一個(gè)密碼,他們能成功破譯的概率分別為,則此密碼能被破譯的概率為(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人.現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別p1,p2,p3,假設(shè)p1,p2,p3互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.
(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率.若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?
(Ⅱ)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為q1,q2,q3,其中q1,q2,q3是p1,p2,p3的一個(gè)排列,求所需派出人員數(shù)目X的分布列和均值(數(shù)學(xué)期望)EX;
(Ⅲ)假定l>p1>p2>p3,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分13分)

工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人,F(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿(mǎn)分13分)

工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人。現(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省高二下學(xué)期期末模塊測(cè)試數(shù)學(xué)(理 題型:解答題

(本題滿(mǎn)分13分)

工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人,F(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.

(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?

(Ⅱ)若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)學(xué)期望);

(Ⅲ)假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)達(dá)到最小,并證明之。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案