考點(diǎn):實(shí)際問(wèn)題中導(dǎo)數(shù)的意義,函數(shù)恒成立問(wèn)題
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求出當(dāng)a=1,b=0時(shí)的函數(shù)f(x)的表達(dá)式,求出導(dǎo)數(shù),以及單調(diào)區(qū)間,從而判斷極值,注意這里也是最值;
(Ⅱ)寫(xiě)出b=1時(shí)的函數(shù)f(x)的表達(dá)式,并求出導(dǎo)數(shù),由條件得到α=1,β=a,說(shuō)明x
1,x
2∈[α,β]是減區(qū)間,從而|f(x
1)-f(x
2)|≤f(1)-f(a),化簡(jiǎn)并令g(x)=
(x
2-1)-xlnx(1<x≤e),通過(guò)求導(dǎo),判斷g(x)在(1,e]內(nèi)是增,從而g(x)≤
(e
2-1)-elne即
(a
2-1)-alna≤
,而
<1,故結(jié)論成立.
解答:
(Ⅰ)解:當(dāng)a=1,b=0時(shí),f(x)=lnx-x(x>0),
導(dǎo)數(shù)f′(x)=
-1,當(dāng)x>1時(shí),f′(x)<0,
當(dāng)0<x<1時(shí),f′(x)>0,
∴x=1時(shí),函數(shù)取極大值,也為最大值,且為-1;
(Ⅱ)證明:當(dāng)b=1時(shí),f(x)=alnx+
x
2-(1+a)x,
導(dǎo)數(shù)f′(x)=
+x-(1+a)=
(x>0),
∵α,β是f(x)兩個(gè)極值點(diǎn),且α<β,β∈(1,e],
∴α=1,β=a,(1<a≤e),
∴當(dāng)1<x<a時(shí),f′(x)<0,即函數(shù)f(x)遞減,
當(dāng)x>a或0<x<1,f′(x)>0,即函數(shù)f(x)遞增,
∵任意的x
1,x
2∈[α,β],則函數(shù)f(x)在該區(qū)間內(nèi)是減函數(shù),
∴f(1)最大且為
-(1+a),f(a)最小且為alna+
a
2-(1+a)a,
∴|f(x
1)-f(x
2)|≤f(1)-f(a)=
-(1+a)-alna-
a
2+(1+a)a
=
(a
2-1)-alna,
令g(x)=
(x
2-1)-xlnx(1<x≤e)
則g′(x)=x-1-lnx,g′(1)=0,g′(e)=e-1-1>0,
∴g(x)在(1,e]上遞增,
故g(x)≤
(e
2-1)-elne=
,即
(a
2-1)-alna≤
,
而
<1,
∴|f(x
1)-f(x
2)|<1.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合運(yùn)用:求單調(diào)區(qū)間和求極值、最值,同時(shí)考查函數(shù)在一區(qū)間內(nèi)的任兩個(gè)函數(shù)值的差的絕對(duì)值不大于最大值與最小值的差,考查運(yùn)用函數(shù)的單調(diào)性比較大小,是一道綜合題.