已知O, A, M,B為平面上四點(diǎn),且,實(shí)數(shù),則

A. 點(diǎn)M在線段AB上 B. 點(diǎn)B在線段AM上

C. 點(diǎn)A在線段BM上 D. O,A,M,B一定共線

 

B

【解析】

試題分析:,∴點(diǎn)B在線段AM上.

考點(diǎn):向量共線定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:填空題

執(zhí)行如右圖所示的程序框圖,則輸出的值為_(kāi)____________;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三下學(xué)期第八次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,已知的兩條直角邊AC,BC的長(zhǎng)分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點(diǎn)D,則BD的長(zhǎng)為 ;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三第六次模擬理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2014111719404082712862/SYS201411171940559995973074_ST/SYS201411171940559995973074_ST.002.png">.

(1)求函數(shù)上的最小值;

(2)對(duì),不等式恒成立,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三第六次模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

一個(gè)幾何體的三視圖如右圖所示,則該幾何體的體積為_(kāi)_ ___.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三第六次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義在區(qū)間上的函數(shù)的圖象如右圖所示,則

圖象為

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三第六次模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知數(shù)列的前n項(xiàng)和為,

(1)證明:數(shù)列是等差數(shù)列,并求

(2)設(shè),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年重慶市高三下學(xué)期考前模擬(二診)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖所示的兩個(gè)同心圓盤(pán)均被等分(),在相重疊的扇形格中依次同時(shí)填上,內(nèi)圓盤(pán)可繞圓心旋轉(zhuǎn),每次可旋轉(zhuǎn)一個(gè)扇形格,當(dāng)內(nèi)圓盤(pán)旋轉(zhuǎn)到某一位置時(shí),定義所有重疊扇形格中兩數(shù)之積的和為此位置的“旋轉(zhuǎn)和”.

(1)求個(gè)不同位置的“旋轉(zhuǎn)和”的和;

(2)當(dāng)為偶數(shù)時(shí),求個(gè)不同位置的“旋轉(zhuǎn)和”的最小值;

(3)設(shè),在如圖所示的初始位置將任意對(duì)重疊的扇形格中的兩數(shù)均改寫(xiě)為0,證明:當(dāng)時(shí),通過(guò)旋轉(zhuǎn),總存在一個(gè)位置,任意重疊的扇形格中兩數(shù)不同時(shí)為0.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年重慶市高三下學(xué)期考前模擬(二診)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

重慶市教委為配合教育部公布高考改革新方案,擬定在重慶中學(xué)進(jìn)行調(diào)研,廣泛征求高三年級(jí)學(xué)生的意見(jiàn)。重慶中學(xué)高三年級(jí)共有700名學(xué)生,其中理科生500人,文科生200人,現(xiàn)采用分層抽樣的方法從中抽取14名學(xué)生參加調(diào)研,則抽取的理科生的人數(shù)為( )

(A)2 (B)4 (C)5 (D)10

 

查看答案和解析>>

同步練習(xí)冊(cè)答案