執(zhí)行如右圖所示的程序框圖,則輸出的值為_____________;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省等五校高三第二次聯(lián)合模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知直線與曲線切于點(diǎn),則的值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省等五校高三第三次模擬文科數(shù)學(xué)試卷(解析版) 題型:填空題
在極坐標(biāo)系中,若圓的極坐標(biāo)方程為,若以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸建立相應(yīng)的平面直角坐標(biāo)系,則在直角坐標(biāo)系中,圓心的直角坐標(biāo)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)試判斷函數(shù)的單調(diào)性;
(2)設(shè),求在上的最大值;
(3)試證明:對(duì)任意,不等式都成立(其中是自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,已知的直徑,為上一點(diǎn),且,過(guò)點(diǎn)的的切線交延長(zhǎng)線于點(diǎn),則________;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練理科數(shù)學(xué)試卷(解析版) 題型:選擇題
平面上有一組平行線且相鄰平行線間的距離為,把一枚半徑為的硬幣任意平擲在這個(gè)平面,則硬幣不與任何一條平行線相碰的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓的左、右焦點(diǎn)分別
為,其上頂點(diǎn)為已知是邊長(zhǎng)為的正三角形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)任作一動(dòng)直線交橢圓于兩點(diǎn),記.若在線段上取一點(diǎn),使得,當(dāng)直線運(yùn)動(dòng)時(shí),點(diǎn)在某一定直線上運(yùn)動(dòng),求出該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高考第七次適應(yīng)性訓(xùn)練文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知的三頂點(diǎn)坐標(biāo)為,,,點(diǎn)的坐標(biāo)為,向內(nèi)部投一點(diǎn),那么點(diǎn)落在內(nèi)的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年陜西省高三第六次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知O, A, M,B為平面上四點(diǎn),且,實(shí)數(shù),則
A. 點(diǎn)M在線段AB上 B. 點(diǎn)B在線段AM上
C. 點(diǎn)A在線段BM上 D. O,A,M,B一定共線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com