【題目】某校高一舉行了一次數(shù)學(xué)競(jìng)賽,為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿(mǎn)分為)作為樣本(樣本容量為)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,已知得分在[50,60),[90,100]的頻數(shù)分別為8,2.
(1)求樣本容量和頻率分布直方圖中的的值;
(2)估計(jì)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù);
(3)在選取的樣本中,從競(jìng)賽成績(jī)?cè)?/span>分以上(含分)的學(xué)生中隨機(jī)抽取名學(xué)生,求所抽取的名學(xué)生中至少有一人得分在內(nèi)的概率.
【答案】(1);(2);(3).
【解析】
試題分析:(1)借助題設(shè)條件運(yùn)用頻率分布直方圖求解;(2)借助題設(shè)條件運(yùn)用頻率分布直方圖中提供的數(shù)據(jù)信息求解;(3)運(yùn)用列舉法和古典概型計(jì)算公式求解.
試題解析:
(1)由題意可知,樣本容量n==50, …………2分
,x=0.100﹣0.004﹣0.010﹣0.016﹣0.040=0.030; ……………4分
(2)設(shè)本次競(jìng)賽學(xué)生成績(jī)的中位數(shù)為m,
則[0.016+0.03]×10+(m﹣70)×0.040=0.5,解得, ……………8分
(3)由題意可知,分?jǐn)?shù)在[80,90)內(nèi)的學(xué)生有5人,記這5人分別為a1,a2,a3,a4,a5,
分?jǐn)?shù)在[90,100]內(nèi)的學(xué)生有2人,記這2人分別為b1,b2.抽取的2名學(xué)生的所有情況有21種,
分別為:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,b1),(a1,b2),(a2,a3),
(a2,a4),(a2,a5),(a2,b1),(a2,b2),(a3,a4),(a3,a5),(a3,b1),
(a3,b2),(a4,a5),(a4,b1),(a4,b2),(a5,b1),(a5,b2),(b1,b2). …10分
其中2名同學(xué)的分?jǐn)?shù)都不在[90,100]內(nèi)的情況有10種,分別為:
(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5).
∴所抽取的2名學(xué)生中至少有一人得分在[90,100]內(nèi)的概率. …………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若f(-1)=f(1),求a,并直接寫(xiě)出函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)a≥時(shí),是否存在實(shí)數(shù)x,使得=一?若存在,試確定這樣的實(shí)數(shù)x的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射擊游戲規(guī)定:每位選手最多射擊3次;射擊過(guò)程中若擊中目標(biāo),方可進(jìn)行下一次射擊,否則停止射擊;同時(shí)規(guī)定第i(i=1,2,3)次射擊時(shí)擊中目標(biāo)得4﹣i分,否則該次射擊得0分.已知選手甲每次射擊擊中目標(biāo)的概率為0.8,且其各次射擊結(jié)果互不影響.
(Ⅰ)求甲恰好射擊兩次的概率;
(Ⅱ)設(shè)該選手甲停止射擊時(shí)的得分總和為ξ,求隨機(jī)變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓與軸交于兩點(diǎn)(在的上方),直線(xiàn).
(1)當(dāng)時(shí),求直線(xiàn)被圓截得的弦長(zhǎng);
(2)若,點(diǎn)為直線(xiàn)上一動(dòng)點(diǎn)(不在軸上),直線(xiàn)的斜率分別為,直線(xiàn)與圓的另一交點(diǎn)分別.
①問(wèn)是否存在實(shí)數(shù),使得成立?若存在,求出的值;若不存在,說(shuō)明理由;
②證明:直線(xiàn)經(jīng)過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從含有兩件正品,和一件次品的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi) (單位:千元)對(duì)年銷(xiāo)售量 (單位:)和年利潤(rùn)(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)和年銷(xiāo)售量數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
|
| |||||
46.6 | 563 | 6.8 | 298.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為年銷(xiāo)售量關(guān)于年宣傳費(fèi)的回歸方程類(lèi)型?(給出判斷即可,不必說(shuō)明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)以知這種產(chǎn)品的年利率與、的關(guān)系為.根據(jù)(2)的結(jié)果求年宣傳費(fèi)時(shí),年銷(xiāo)售量及年利潤(rùn)的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),……,其回歸線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(xiàn) =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2離心率為e.過(guò)F2的直線(xiàn)與雙曲線(xiàn)的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線(xiàn) =1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2離心率為e.過(guò)F2的直線(xiàn)與雙曲線(xiàn)的右支交于A、B兩點(diǎn),若△F1AB是以A為直角頂點(diǎn)的等腰直角三角形,則e2的值是( )
A.1+2
B.3+2
C.4﹣2
D.5﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,,點(diǎn)為的中點(diǎn).
(1)求證:直線(xiàn)平面;
(2)求證:平面平面;
(3)求直線(xiàn)與平面的夾角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com