【題目】如圖,在四棱錐中,平面平面,是邊長(zhǎng)為2的等邊三角形,底面是菱形,且

證明:;

求平面與平面所成二面角的大。

【答案】(1)證明見(jiàn)解析;(2).

【解析】

AD的中點(diǎn)E,連結(jié)PE,BE,BD,推導(dǎo)出,,從而平面PBE,由此能證明

EB,EP兩兩垂直,以E為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),再求出平面PBC的一個(gè)法向量1,,利用向量法即可求出平面PAD與平面PBC所成二面角的大小.

證明:AD的中點(diǎn)E,連結(jié)PE, BEBD,

四邊形ABCD是菱形,

是等邊三角形,,

同理,得

,平面PBE平面PBE,

平面PBE

平面PBE,

平面平面ABCD,

可知EA,EBEP兩兩垂直,以E為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖,

由題意得,

0,,0,,

,

設(shè)平面PBC的一個(gè)法向量y,,

,取,得1,,

是平面PAD的一個(gè)法向量,

,,

平面PAD與平面PBC所成二面角的大小為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的最小值.

(Ⅱ)若在區(qū)間上有兩個(gè)極值點(diǎn),

(i)求實(shí)數(shù)的取值范圍;

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)上的任意一點(diǎn)到兩定點(diǎn)、距離之和為,直線(xiàn)交曲線(xiàn)兩點(diǎn),為坐標(biāo)原點(diǎn).

1)求曲線(xiàn)的方程;

2)若不過(guò)點(diǎn)且不平行于坐標(biāo)軸,記線(xiàn)段的中點(diǎn)為,求證:直線(xiàn)的斜率與的斜率的乘積為定值;

3)若直線(xiàn)過(guò)點(diǎn),求面積的最大值,以及取最大值時(shí)直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿(mǎn)足a1+a418,a2+a536

1)求數(shù)列{an}的通項(xiàng)公式an;

2)若數(shù)列{bn}滿(mǎn)足bnan+log2an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx﹣2mx+x2(m>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象與x軸交于A,B兩點(diǎn),其橫坐標(biāo)分別為x1,x2(x1<x2),線(xiàn)段AB的中點(diǎn)的橫坐標(biāo)為x0,且x1,x2恰為函數(shù)h(x)=lnx﹣cx2﹣bx的零點(diǎn).求證(x1﹣x2)h'(x0)≥+ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)非直角的內(nèi)角、、所對(duì)邊的長(zhǎng)分別為、、,則下列結(jié)論正確的是_____(寫(xiě)出所有正確結(jié)論的編號(hào)).

①“”是“”的充分必要條件

②“”是“”的充分必要條件

③“”是“”的充分必要條件

④“”是“”的充分必要條件

⑤“”是“”的充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O是平面直角坐標(biāo)系的原點(diǎn),雙曲線(xiàn).

1)過(guò)雙曲線(xiàn)的右焦點(diǎn)x軸的垂線(xiàn),交A、B兩點(diǎn),求線(xiàn)段AB的長(zhǎng);

2)設(shè)M的右頂點(diǎn),P右支上任意一點(diǎn),已知點(diǎn)T的坐標(biāo)為,當(dāng)的最小值為時(shí),求t的取值范圍;

3)設(shè)直線(xiàn)的右支交于A,B兩點(diǎn),若雙曲線(xiàn)右支上存在點(diǎn)C使得,求實(shí)數(shù)m的值和點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級(jí)

1級(jí)優(yōu)

2級(jí)良

3級(jí)輕度污染

4級(jí)中度污染

5級(jí)重度污染

6級(jí)嚴(yán)重污染

該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.

(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為估計(jì)2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?

(Ⅱ)已知空氣質(zhì)量等級(jí)為1級(jí)時(shí)不需要凈化空氣,空氣質(zhì)量等級(jí)為2級(jí)時(shí)每天需凈化空氣的費(fèi)用為1000元,空氣質(zhì)量等量等級(jí)為3級(jí)時(shí)每天需凈化空氣的費(fèi)用為2000元.若從這10天樣本中空氣質(zhì)量為1級(jí)、2級(jí)、3級(jí)的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為3000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,我國(guó)某海岸線(xiàn)可看作由圓弧AB和射線(xiàn)BC連接而成,其中圓弧AB所在圓O的半徑為12海里,圓心角為120°,規(guī)定外輪除特許外,不得進(jìn)入離我國(guó)海岸線(xiàn)12海里以?xún)?nèi)的區(qū)域.在港口A處設(shè)有觀察站,外輪一旦進(jìn)入規(guī)定區(qū)域,觀察站會(huì)接收到預(yù)警信號(hào),現(xiàn)從A處測(cè)得一外輪在北偏東60°,距離港口x海里的P處,沿直線(xiàn)PA方向航行.

1)當(dāng)x30時(shí),分別求出外輪到海岸線(xiàn)BC和弧AB的最短距離,并判斷觀察站是否接收到預(yù)警信號(hào)?

2)當(dāng)x為何值時(shí),觀察站開(kāi)始接收到預(yù)警信號(hào)?

查看答案和解析>>

同步練習(xí)冊(cè)答案