已知函數(shù)
 (Ⅰ)若時,函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
 (Ⅱ)在(Ⅰ)的結論下,設函數(shù)的最小值;
 (Ⅲ)設函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過線段PQ的中點Rx軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

(Ⅰ)依題意:
上是增函數(shù),
∴ 對任意恒成立,        ……………2分
 ∴b的取值范圍為……4分
(Ⅱ)設,即 
∴當上為增函數(shù),當t=1時,6分
…………7分
上為減函數(shù),當t=2時,……8分
綜上所述,…………9分
(Ⅲ)設點P、Q的坐標是則點MN的橫坐標為
C1M處的切線斜率為 C­在點N處的切線斜率
假設C1在點M處的切線與C2在點N處的切線平行,則


 ,……12分
……………………①

     ∴     
所以上單調(diào)遞增,故 , 則
這與①矛盾,假設不成立,故C1在點M處的切線與C2在點N處的切線不平行.

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)拋物線經(jīng)過點、
其中,,設函數(shù)處取到極值.
(1)用表示;
(2) 比較的大小(要求按從小到大排列);
(3)若,且過原點存在兩條互相垂直的直線與曲線均相切,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)),
(Ⅰ)若,曲線在點處的切線與軸垂直,求的值;
(Ⅱ)在(Ⅰ)的條件下,求證:;
(Ⅲ)若,試探究函數(shù)的圖象在其公共點處是否存在公切線,若存在,研究值的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

商場銷售某種商品的經(jīng)驗表明,該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克)滿足關系式,其中為常數(shù),已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1) 求的值;
(2) 若商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(即函數(shù)取到極值時點的橫坐標).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
在x=1處取得極值,求a的值;
的單調(diào)區(qū)間;
(Ⅲ)若的最小值為1,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)
已知函數(shù),,其中R.
(1)當a=1時,判斷的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設函數(shù),當時,若,總有
成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)).
(I)當時,求在點處的切線方程;
(Ⅱ)求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l4分)
已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.
(1)求函數(shù)f(x)的解析式;
  (2)求證:對于區(qū)間[-1,1]上任意兩個自變量的值x1,x2,都有
|f(x1)-f(x2)|≤4;
(3)若過點A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案