(本小題滿分13分)已知函數(shù)().
(I)當時,求在點處的切線方程;
(Ⅱ)求函數(shù)在上的最小值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知函數(shù)
(1)判斷函數(shù)在上的單調(diào)性;
(2)是否存在實數(shù),使曲線在點處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若時,函數(shù)在其定義域上是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè)函數(shù)的最小值;
(Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知的圖像在點處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明: ()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為奇函數(shù),且在處取得極大值2.
(1)求函數(shù)的解析式;
(2)記,求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)判斷函數(shù)的奇偶性并證明;
(II)若,證明:函數(shù)在區(qū)間上是增函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(Ⅰ)求的值;
(Ⅱ)若在上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設(shè),若在上至少存在一個,使得成立,求的m取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若 恒成立,試確定實數(shù)的取值范圍;
(3)證明:(且)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com