9.口袋中有100個大小相同的紅球、白球、黑球,其中紅球45個,從口袋中摸出一個球,摸出白球的概率為0.23,則摸出黑球的概率為( 。
A.0.32B.0.45C.0.64D.0.67

分析 先求出口袋中有100-45-0.23×100=32個黑球,由此能求出摸出黑球的概率.

解答 解:∵口袋中有100個大小相同的紅球、白球、黑球,其中紅球45個,
從口袋中摸出一個球,摸出白球的概率為0.23,
∴口袋中有100-45-0.23×100=32個黑球,
∴摸出黑球的概率為p=$\frac{32}{100}=0.32$.
故選:A.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某工件的三視圖如圖所示,現(xiàn)將該工件通過切割,加工成一個體積盡可能大的正方體新工件,并使新工件的一個面落在原工件的一個面內(nèi),則新工件的棱長為( 。
A.$\frac{1}{2}$B.1C.2D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)$f(x)=\sqrt{a{x^2}-2ax+1}$的定義域為R,則實數(shù)a的取值范圍是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)數(shù)列{an}是公比為q的等比數(shù)列,且|q|>1.若數(shù)列{an}的連續(xù)四項構(gòu)成集合{-72,-32,48,108},則2q的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,a2=3,其前n項和Sn滿足Sn+1+Sn-1=2Sn+1,其中n≥2,n∈N*
(1)求證:數(shù)列{an}為等差數(shù)列,并求其通項公式;
(2)設(shè)bn=$\frac{a_n}{2^n}\;,\;\;{T_n}$為數(shù)列{bn}的前n項和,求Tn;
(3)設(shè)cn=4n+(-1)n-1λ•2an(λ為非零整數(shù),n∈N*),試確定實數(shù)λ的值,使得對任意的n∈N*,都有cn+1>cn成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=AC=1,$\overrightarrow{AM}$=$\overrightarrow{MB}$,$\overrightarrow{BN}$=$\overrightarrow{NC}$,$\overrightarrow{CM}$•$\overrightarrow{AN}$=-$\frac{1}{4}$,則∠ABC=( 。
A.$\frac{5π}{12}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A,B,C所對的邊為a,b,c.已知c2=a2+b2-4bccosC,且A-C=$\frac{π}{2}$.
(Ⅰ)求cosC的值;
(Ⅱ)求cos(B+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=2ln3,b=2lg2,c=($\frac{1}{4}$)${\;}^{lo{g}_{\frac{1}{3}}\frac{1}{2}}$,則( 。
A.c>a>bB.a>b>cC.a>c>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y-1≤0}\\{x-y+1≥0}\\{x≥0,y≥0}\end{array}\right.$,則z=2x+3y點(diǎn)的最大值是13.

查看答案和解析>>

同步練習(xí)冊答案