【題目】在直角坐標系中,曲線與x軸交于A,B兩點,點Q的坐標為.
(1)是否存在b,使得,如果存在求出b值;如果不存在,說明理由;
(2)過A,B,Q三點的圓面積最小時,求圓的方程.
【答案】(1)不存在,理由見詳解;(2)
【解析】
(1)求解直線與直線的斜率,根據(jù)韋達定理,通過計算斜率之積,即可判斷;
(2)通過求解的垂直平分線,求得外接圓圓心坐標,以及半徑,再求得半徑的最小值,在半徑最小的情況下,求得參數(shù),即可獲得圓的方程.
(1)不能出現(xiàn)的情況,理由如下:
設,則滿足,
所以.又Q坐標為.
故AQ的斜率與BQ的斜之積為
所以不能出現(xiàn)的情況.
(2)BQ的中點坐標為,
可得BQ的中垂線方程為
由(1)可得,
所以AB的中垂線方程為.
聯(lián)立,
又,可得
所以過A、B、Q三點的圓的圓心坐標為,半徑.
當時,半徑r最小為,
此時圓的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)氣象局統(tǒng)計,某市2019年從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣.國際上通常用環(huán)境空氣質(zhì)量指數(shù)(AQI)來描述污染狀況,下表是某氣象觀測點記錄的連續(xù)4天里,該市AQI指數(shù)與當天的空氣水平可見度的情況.
AQI指數(shù) | 900 | 700 | 300 | 100 |
空氣水平可見度 | 0.5 | 3.5 | 6.5 | 9.5 |
(1)設,根據(jù)表中的數(shù)據(jù),求出關于的回歸方程;
(2)若某天該市AQT指數(shù),那么當天空氣水平可見度大約為多少?
附:參考數(shù)據(jù):,.
參考公式:線性回歸力程中,,,其中為樣本平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,Sn為{an}的前n項和,且a10=19,S10=100;數(shù)列{bn}對任意n∈N*,總有b1b2b3…bn﹣1bn=an+2成立.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(﹣1)n,求數(shù)列{cn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3(a2+a+2)x2+a2(a+2)x,a∈R.
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)求函數(shù)y=f(x)的極值點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.下圖所示的陽馬中,側(cè)棱底面ABCD,且,則當點E在下列四個位置:PA中點、PB中點、PC中點、PD中點時分別形成的四面體中,鱉臑有( )個.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為F,準線為l,A為C上一點,已知以F為圓心,FA為半徑的圓F交l于M.N點.
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點在同一直線m上,直線n與m平行,且n與C只有一個公共點,求坐標原點到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若函數(shù)在區(qū)間(為自然對數(shù)的底數(shù))上有唯一的零點,求實數(shù)的取值范圍;
(2)若在(為自然對數(shù)的底數(shù))上存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,底面為矩形的四棱錐中,底面ABCD,,MN分別為ADPC中點.
(1)證明:平面PAB;
(2)求異面直線MN與AB所成角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若關于的方程在上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍;
(2)是否存在實數(shù)使得總成立?若存在,求實數(shù)的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com