已知數(shù)列{an}的通項公式是an=-n2+12n-32,其前n項和是Sn,對任意的m,n∈N*m<n,則SnSm的最大值是(  ).
A.-21B.4 C.8D.10
D
由于an=-(n-4)(n-8),故當(dāng)n<4時,an<0,Snn的增加而減小,S3S4,當(dāng)4<n<8時,an>0,Snn的增加而增大,S7S8,當(dāng)n>8時,an<0,Snn的增加而減小,故SnSmS8S4a5a6a7a8a5a6a7=10.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在數(shù)列{an}中,a1=1,a2=2,若當(dāng)整數(shù)n>1時,Sn+1Sn-1=2(SnS1)恒成立,則S15=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知首項為正數(shù)的等差數(shù)列{an}的前n項和為Sn,若a1 006a1 007是方程x2-2 012x-2 011=0的兩根,則使Sn>0成立的正整數(shù)n的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}滿足d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”.已知正項數(shù)列為“調(diào)和數(shù)列”,且b1b2+…+b9=90,則b4·b6的最大值是(  ).
A.10B.100C.200D.400

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知首項為的等比數(shù)列{an}不是遞減數(shù)列,其前n項和為Sn(n∈N*),且S3a3,S5a5S4a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)TnSn(n∈N*),求數(shù)列{Tn}的最大項的值與最小項的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,a1=142,d=-2,從第一項起,每隔兩項取出一項,構(gòu)成新的數(shù)列{bn},則此數(shù)列的前n項和Sn取得最大值時n的值是(  ).
A.23B.24 C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

等差數(shù)列{an}的前n項和為Sn,已知S10=0,S15=25,則nSn的最小值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,首項a1=0,公差d≠0,若ama1a2+…+a9,則m的值為(  )
A.37B. 36C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,a1a5=10,a4=7,則數(shù)列{an}的公差為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案