【題目】已知拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F與橢圓C的一個(gè)焦點(diǎn)重合,且拋物線(xiàn)的準(zhǔn)線(xiàn)與橢圓C相交于點(diǎn)
(1)求拋物線(xiàn)的方程;
(2)過(guò)點(diǎn)F是否存在直線(xiàn)l與橢圓C交于M,N兩點(diǎn),且以MN為對(duì)角線(xiàn)的正方形的第三個(gè)頂點(diǎn)恰在y軸上?若存在,求出直線(xiàn)l的方程;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:由題意知, ,則p=2,

∴拋物線(xiàn)方程為y2=4x


(2)解:設(shè)橢圓方程為 ,

,解得a2=2,b2=1.

∴橢圓C的方程為

若l垂直于x軸,得M(1,﹣ ),N(1, ), ,不符合;

若l不垂直于x軸,

設(shè)正方形第三個(gè)頂點(diǎn)坐標(biāo)為P(0,y0),M(x1,y1),N(x2,y2

令l:y=k(x﹣1)(k≠0),代入 ,得(1+2k2)x2﹣4k2x+2k2﹣2=0.

,

y1+y2=k(x1+x2)﹣2k= ,

則線(xiàn)段MN的中垂線(xiàn)方程為 ,

∴P(0, ).

,得x1x2+(y1﹣y0)(y2﹣y0)=0.

(y0≠0),∴ ,

,∴ ,解得k=

∴直線(xiàn)l的方程為


【解析】(1)由已知求得p,則拋物線(xiàn)方程可求;(2)設(shè)出橢圓方程,由已知列關(guān)于a,b,c的方程組,求得a,b的值,得到橢圓方程,當(dāng)直線(xiàn)l的斜率不存在時(shí),不合題意;當(dāng)直線(xiàn)l的斜率存在時(shí),設(shè)正方形第三個(gè)頂點(diǎn)坐標(biāo)為P(0,y0),設(shè)出直線(xiàn)方程y=k(x﹣1)(k≠0),聯(lián)立直線(xiàn)方程和橢圓方程,利用根與系數(shù)的關(guān)系結(jié)合 求得k值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足cos = ,bccosA=3. (Ⅰ)求△ABC的面積;
(Ⅱ)若 ,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè){ an}為等比數(shù)列,{bn}為等差數(shù)列,且b1=0,cn=an+bn , 若{ cn}是1,1,2,…,求數(shù)列{ cn}的前10項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為a的等邊三角形ABC的中線(xiàn)AF與中位線(xiàn)DE交于點(diǎn)G,已知△A′DE(A′平面ABC)是△ADE繞DE旋轉(zhuǎn)過(guò)程中的一個(gè)圖形,有下列命題: ①平面A′FG⊥平面ABC;
②BC∥平面A′DE;
③三棱錐A′﹣DEF的體積最大值為 a3;
④動(dòng)點(diǎn)A′在平面ABC上的射影在線(xiàn)段AF上;
⑤二面角A′﹣DE﹣F大小的范圍是[0, ].
其中正確的命題是(寫(xiě)出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為4的正方形ABCD所在平面與正三角形PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA∥平面MBD;
(2)求二面角P﹣BD﹣A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,a2+a7=﹣23,a3+a8=﹣29. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an+bn}是首項(xiàng)為1,公比為c的等比數(shù)列,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 的圖象為C,則如下結(jié)論中正確的是(寫(xiě)出所有正確結(jié)論的編號(hào)).
①圖象C關(guān)于直線(xiàn) 對(duì)稱(chēng);
②圖象C關(guān)于點(diǎn) 對(duì)稱(chēng);
③函數(shù)f(x)在區(qū)間 內(nèi)是減函數(shù);
④把函數(shù) 的圖象上點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的一半(縱坐標(biāo)不變)可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歐巴老師布置給時(shí)鎮(zhèn)同學(xué)這樣一份數(shù)學(xué)作業(yè):在同一個(gè)直角坐標(biāo)系中畫(huà)出四個(gè)對(duì)數(shù)函數(shù)的圖象,使它們的底數(shù)分別為 .時(shí)鎮(zhèn)同學(xué)為了和暮煙同學(xué)出去玩,問(wèn)大英同學(xué)借了作業(yè)本很快就抄好了,詳見(jiàn)如圖.第二天,歐巴老師當(dāng)堂質(zhì)問(wèn)時(shí)鎮(zhèn)同學(xué):“你畫(huà)的四條曲線(xiàn)中,哪條是底數(shù)為e的對(duì)數(shù)函數(shù)圖象?”時(shí)鎮(zhèn)同學(xué)無(wú)言以對(duì),憋得滿(mǎn)臉通紅,眼看時(shí)鎮(zhèn)同學(xué)就要被歐巴老師訓(xùn)斥一番,聰明睿智的你能不能幫他一把,回答這個(gè)問(wèn)題呢?曲線(xiàn)才是底數(shù)為e的對(duì)數(shù)函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= x﹣lnx(x>0),則函數(shù)f(x)(
A.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)無(wú)零點(diǎn)
B.在區(qū)間(0,1)內(nèi)有零點(diǎn),在區(qū)間(1,+∞)內(nèi)有零點(diǎn)
C.在區(qū)間(0,3),(3,+∞)均無(wú)零點(diǎn)
D.在區(qū)間(0,3),(3,+∞)均有零點(diǎn)

查看答案和解析>>

同步練習(xí)冊(cè)答案