在梯形中,,,為梯形所在平面上一點(diǎn),且滿足=0,為邊上的一個(gè)動(dòng)點(diǎn),則的最小值為 .

【解析】

試題分析:取AB中點(diǎn)M,連DM,則四邊形DMBC為平行四邊形,DM//CB,. 由的最小值為

考點(diǎn):向量數(shù)量積

考點(diǎn)分析: 考點(diǎn)1:平面向量的數(shù)量積 試題屬性
  • 題型:
  • 難度:
  • 考核:
  • 年級(jí):
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


設(shè)函數(shù)f(x)=ax﹣(k﹣1)a﹣x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).

(1)若f(1)>0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(sin2θ+cos2θ)+f(1﹣tcosθ)<0對(duì)所有的θ∈(0,)均成立的t的取值范圍;

(2)若f(1)=,g(x)=a2x+a﹣2x﹣2mf(x),且g(x)在[1,+∞)上的最小值為﹣1,求m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市高三上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

射擊測(cè)試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機(jī)變量表示該射手一次測(cè)試?yán)塾?jì)得分,如果的值不低于3分就認(rèn)為通過測(cè)試,立即停止射擊;否則繼續(xù)射擊,但一次測(cè)試最多打靶3次,每次射擊的結(jié)果相互獨(dú)立。

(1)如果該射手選擇方案1,求其測(cè)試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;

(2)該射手選擇哪種方案通過測(cè)試的可能性大?請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省揚(yáng)州市高三上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知樣本6,7,8,9,m的平均數(shù)是8,則標(biāo)準(zhǔn)差是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分16分)數(shù)列,滿足:,

(1)若數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列;

(2)若數(shù)列,都是等差數(shù)列,求證:數(shù)列從第二項(xiàng)起為等差數(shù)列;

(3)若數(shù)列是等差數(shù)列,試判斷當(dāng)時(shí),數(shù)列是否成等差數(shù)列?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)是奇函數(shù),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù) 的最小正周期為 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省泰州市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為 .(寫出所有真命題的序號(hào))

①若直線,則在平面內(nèi),一定不存在與直線平行的直線.

②若直線,則在平面內(nèi),一定存在無數(shù)條直線與直線垂直.

③若直線,則在平面內(nèi),不一定存在與直線垂直的直線.

④若直線,則在平面內(nèi),一定存在與直線垂直的直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年江蘇省常州市高三上學(xué)期期末調(diào)研測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù),則函數(shù)的值域?yàn)? .

查看答案和解析>>

同步練習(xí)冊(cè)答案