【題目】已知奇函數(shù)在上單調(diào)遞減,且,則不等式的解集________.
【答案】
【解析】
根據(jù)題意,由奇函數(shù)的性質(zhì)可得f(﹣3)=0,結(jié)合函數(shù)的單調(diào)性分析可得f(x)>0與f(x)<0的解集,又由(x﹣1)f(x)>0或,分析可得x的取值范圍,即可得答案.
根據(jù)題意,f(x)為奇函數(shù)且f(3)=0,則f(﹣3)=0,
又由f(x)在(﹣∞,0)上單調(diào)遞減,則在(﹣∞,﹣3)上,f(x)>0,在(﹣3,0)上,f(x)<0,
又由f(x)為奇函數(shù),則在(0,3)上,f(x)>0,在(3,+∞)上,f(x)<0,
則f(x)<0的解集為(﹣3,0)∪(3,+∞),f(x)>0的解集為(﹣∞,﹣3)∪(0,3);
(x﹣1)f(x)>0或,
分析可得:﹣1<x<0或1<x<3,
故不等式的解集為(﹣3,0)∪(1,3);
故答案為(﹣3,0)∪(1,3);
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別為,上頂點(diǎn)為,若直線的斜率為1,且與橢圓的另一個(gè)交點(diǎn)為, 的周長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)的直線(直線的斜率不為1)與橢圓交于兩點(diǎn),點(diǎn)在點(diǎn)的上方,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計(jì)劃引進(jìn)一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價(jià)6萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額成本)
(2)2019年產(chǎn)量為多少(百輛)時(shí),企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln2x-2aln(ex)+3,x∈[e-1,e2]
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的值域;
(2)若f(x)≤-alnx+4恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請(qǐng)專業(yè)培訓(xùn)機(jī)構(gòu)進(jìn)行培訓(xùn).培訓(xùn)的總費(fèi)用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費(fèi);另一部分是給培訓(xùn)機(jī)構(gòu)繳納的培訓(xùn)費(fèi).若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費(fèi)1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費(fèi)減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費(fèi)用為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)請(qǐng)你預(yù)算:公司此次培訓(xùn)的總費(fèi)用最多需要多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)有兩個(gè)極值點(diǎn)、,且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知函數(shù),其中,求函數(shù)的圖象恰好經(jīng)過第一、二、三象限的概率;
(2)某校早上8:10開始上課,假設(shè)該校學(xué)生小張與小王在早上7:30~8:00之間到校,且每人到該時(shí)間段內(nèi)到校時(shí)刻是等可能的,求兩人到校時(shí)刻相差10分鐘以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)m=1時(shí),若方程在區(qū)間上有唯一的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com