若f′(x0)=2,則
lim
k→0
f(x0-k)-f(x0)
2k
的值為( 。
A.-2B.2C.-1D.1
∵f′(x0)=2,
lim
k→0
f(x0-k)-f(x0)
2k

=
lim
k→0
-
1
2
f(x0-k)-f(x0)
-k

=-
1
2
lim
k→0
f(x0-k)-f(x0)
-k

=-
1
2
f′(x0)=-
1
2
×2
=-1.
故選:C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R,若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:y=
x3
3
-4x+
2
3

(I)求在點M(1,-3)處曲線C的切線方程;
(Ⅱ)若過點N(1,n)作曲線C的切線有三條,求實數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知f(x)=x3-ax2-4x(a為常數(shù)),若函數(shù)f(x)在x=2處取得一個極值,
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若經(jīng)過點A(2,c),(c≠-8)可作曲線y=f(x)的三條切線,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2
+2bx+c在R上可導.
(1)若f(x)在區(qū)間[-1,2]上為減函數(shù),且b=3a,求a的取值范圍;
(2)若f(x)的極大值點在(0,1)內,極小值點在(1,2)內,求
b-2
a-1
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2,則曲線y=f(x)在點(1,f(x))處的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知f(x)=x3的切線的斜率等于1,則其切線方程有( 。
A.1個B.2個C.多于兩個D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,函數(shù)f(x)的圖象是折線段ABC,其A,B,C的坐標分別為(0,4),(2,0),(6,4),則
lim
△x→0
f(1+△x)-f(1)
△x
=______.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)g(x)=(a-2)x(x>-1),函數(shù)f(x)=ln(1+x)+bx的圖象如圖所示.
(I)求b的值;
(II)求函數(shù)F(x)=f(x)-g(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案