【題目】已知函數(shù),若在區(qū)間[2,3]上有最大值1.
(1)求的值;
(2)求函數(shù)在區(qū)間上的值域;
(3)若在[2,4]上單調,求實數(shù)的取值范圍.
【答案】(1);(2) ;(3)
【解析】
(1)根據(jù)二次函數(shù)對稱軸以及在區(qū)間上的最大值列方程,求得的值.(2)利用二次函數(shù)對稱軸和開口方向,求得函數(shù)的最大值和最小值,由此求得函數(shù)值域.(3)利用二次函數(shù)對稱軸與的位置關系,根據(jù)的單調性,求得的取值范圍.
(1)由于二次函數(shù)開口向下,且對稱軸為,所以函數(shù)在上遞減,故,解得.所以.
(2)由(1)知,且函數(shù)開口向下,對稱軸,故函數(shù)在時取得最小值為,在時取得最大值為,所以函數(shù)的值域為.
(3)依題意在上單調,由于函數(shù)的對稱軸為,所以或,解得.故的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設與的面積之和記為.
若,求的值;
若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在中,,D是AE的中點,C是線段BE上的一點,且,,將沿AB折起使得二面角是直二面角.
(l)求證:CD平面PAB;
(2)求直線PE與平面PCD所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】方程ay=b2x2+c中的a,b,c∈{﹣3,﹣2,0,1,2,3},且a,b,c互不相同,在所有這些方程所表示的曲線中,不同的拋物線共有( )
A.60條
B.62條
C.71條
D.80條
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市積極倡導學生參與綠色環(huán)保活動,其中代號為“環(huán)保衛(wèi)士-”的綠色環(huán)保活動小組對年月-年月(一月)內空氣質量指數(shù)進行監(jiān)測,如表是在這一年隨機抽取的天的統(tǒng)計結果:
指數(shù) | |||||||
空氣質量 | 優(yōu) | 良 | 輕微污染 | 輕微污染 | 中度污染 | 中重度污染 | 重度污染 |
天數(shù) | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
(Ⅰ)若市某企業(yè)每天由空氣污染造成的經濟損失(單位:元)與空氣質量指數(shù)(記為)的關系為:,,在這一年內隨機抽取一天,估計該天經濟損失元的概率;
(Ⅱ)若本次抽取的樣本數(shù)據(jù)有天是在供暖季節(jié),其中有天為重度污染,完成列聯(lián)表,并判斷是否有的把握認為市本年度空氣重度污染與供暖有關?
下面臨界值表供參考.
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下面幾種推理過程是演繹推理的是( )
A. 在數(shù)列|中,由此歸納出的通項公式
B. 由平面三角形的性質,推測空間四面體性質
C. 某校高二共有10個班,1班有51人,2班有53人,3班有52人,由此推測各班都超過50人
D. 兩條直線平行,同旁內角互補,如果和是兩條平行直線的同旁內角,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)在R上是單調遞減的一次函數(shù),且f(f(x))=4x-1.
(1)求f(x);
(2)求函數(shù)y=f(x)+x2-x在x∈[-1,2]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合,其中.
(1)寫出集合中的所有元素;
(2)設,證明“”的充要條件是“”
(3)設集合,設,使得,且,試判斷“”是“”的什么條件并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com