11.若直線mx-y-1=0與直線x-2y+3=0垂直,則m的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

分析 由直線的垂直關(guān)系可得m的方程,解方程可得.

解答 解:∵直線mx-y-1=0與直線x-2y+3=0垂直,
∴m•1+(-1)(-2)=0,解得m=-2,
故選:D.

點評 本題考查直線的一般式方程和垂直關(guān)系,屬基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知a=log0.50.4,b=$(\frac{1}{2})^{\frac{1}{2}}$,c=($\frac{1}{3}$)${\;}^{\frac{1}{3}}$則a,b,c的大小關(guān)系是(  )
A.a>c>bB.b>a>cC.c>b>aD.a>b>c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知等差數(shù)列{an}的公差d<0,且a3a5+a3a7+a5a9+a7a9=0,則當前n項的和Sn取得最大值時,n=5或6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知等差數(shù)列{an}中,a1=5,a6+a8=58,則公差d=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若點(a,9)在函數(shù)y=3x的圖象上,則y=loga(x2+2x+5)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,滿足|$\overrightarrow{c}$|=4,$\overrightarrow{a}⊥\overrightarrow$,$\overrightarrow{a}•\overrightarrow{c}$=4,$\overrightarrow•\overrightarrow{c}$=2,則|$\overrightarrow{a}+\overrightarrow$|的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)y=Atan(ωx+$\frac{π}{4}$)(ω>0,A>0)經(jīng)過點($\frac{π}{4}$,-3)和($\frac{π}{2}$,3).則A=3,ω=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,AE是⊙O的直徑,△ABC內(nèi)接于⊙O,AB=BC,AD⊥BC,垂足為D.
(Ⅰ)求證:AE•AD=AC•BC;
(Ⅱ)過點C作⊙O的切線交BA的延長線于F,若AF=4,CF=6,求AC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,sinB+sinA=$\frac{\sqrt{3}(sin2A-sin2B)}{2(sinB-sinA)}$.
(Ⅰ)求角C;
(Ⅱ)若△ABC的三個內(nèi)角滿足mtanAtanB=tanC(tanA+tanB),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案