18.函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$.

分析 當(dāng)x≠0時(shí),f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$,結(jié)合基本不等式,可得函數(shù)的最大值.

解答 解:當(dāng)x=0時(shí),f(0)=0,
當(dāng)x≠0時(shí),f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$=$\frac{1}{\sqrt{{x}^{2}+\frac{4}{{x}^{2}}+5}}$≤$\frac{1}{\sqrt{2\sqrt{{x}^{2}•\frac{4}{{x}^{2}}}+5}}$=$\frac{1}{3}$,
故函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$,
故答案為:$\frac{1}{3}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的最值及其幾何意義,基本不等式的應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖所示的正四棱臺(tái)的上底面邊長(zhǎng)為2,下底面邊長(zhǎng)為8,高為3$\sqrt{2}$,則它的側(cè)棱長(zhǎng)為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某模具長(zhǎng)新接一批新模型制作的訂單,為給訂購(gòu)方回復(fù)出貨時(shí)間,需確定制作該批模型所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),收集數(shù)據(jù)如下:
 制作模型數(shù)x(個(gè)) 10 20 30 40 50
 花費(fèi)時(shí)間y(分鐘) 64 69 75 82 90
(1)請(qǐng)根據(jù)以上數(shù)據(jù),求關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(2)若要制作60個(gè)這樣的模型,請(qǐng)根據(jù)(1)中所求的回歸方程預(yù)測(cè)所花費(fèi)的時(shí)間.
(注:回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中斜率和截距最小二乘估計(jì)公式分別為$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,參考數(shù)據(jù):$\sum_{i=1}^{5}$xiyi=12050,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5500)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.命題“?x∈R,tanx≥0”的否定是?x∈R,tanx<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.拋物線y2=4x上有兩點(diǎn)A,B到焦點(diǎn)的距離之和為7,則A,B到y(tǒng)軸的距離之和為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,a3=6且Sn+1=3Sn,則a1+a5等于( 。
A.12B.$\frac{164}{3}$C.55D.$\frac{170}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知acosB+bcosA=2ccosC.
(1)求角C的大小;
(2)若a=5,b=8,求邊c的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知圓M過(guò)點(diǎn)A(0,$\sqrt{3}$),B(1,0),C(-3,0).
(Ⅰ)求圓M的方程;
(Ⅱ)過(guò)點(diǎn)(0,2)的直線l與圓M相交于D、E兩點(diǎn),且|DE|=2$\sqrt{3}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線y2=2x,兩點(diǎn)M(1,0),N(3,0).
(Ⅰ)求點(diǎn)M到拋物線準(zhǔn)線的距離;
(Ⅱ)過(guò)點(diǎn)M的直線l交拋物線于兩點(diǎn)A,B,若拋物線上存在一點(diǎn)R,使得A,B,N,R四點(diǎn)構(gòu)成平行四邊形,求直線l的斜率.

查看答案和解析>>

同步練習(xí)冊(cè)答案