8.如圖所示的正四棱臺(tái)的上底面邊長(zhǎng)為2,下底面邊長(zhǎng)為8,高為3$\sqrt{2}$,則它的側(cè)棱長(zhǎng)為6.

分析 連結(jié)O′A′,OA,過(guò)A′作A′E⊥OA,交OA于點(diǎn)E,分別求出AE,A′E,由此能求出它的側(cè)棱長(zhǎng).

解答 解:連結(jié)O′A′,OA,過(guò)A′作A′E⊥OA,交OA于點(diǎn)E,
∵正四棱臺(tái)的上底面邊長(zhǎng)為2,下底面邊長(zhǎng)為8,高為3$\sqrt{2}$,
∴AE=$\frac{1}{2}\sqrt{{8}^{2}+{8}^{2}}$-$\frac{1}{2}\sqrt{{2}^{2}+{2}^{2}}$=3$\sqrt{2}$,A′E=3$\sqrt{2}$,
∴它的側(cè)棱長(zhǎng)AA′=$\sqrt{(3\sqrt{2})^{2}+(3\sqrt{2})^{2}}$=6.
故答案為:6.

點(diǎn)評(píng) 本題考查正四棱臺(tái)的側(cè)棱長(zhǎng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意正四棱臺(tái)的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某公司13個(gè)部門(mén)接受的快遞的數(shù)量如莖葉圖所示,則這13個(gè)部門(mén)接受的快遞的數(shù)量的中位數(shù)為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)是定義在(-∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3xf(x)+x2f(x)<0,則不等式(x+2016)3f(x+2016)+27f(-3)>0的解集( 。
A.(-2018,-2016)B.(-∞,-2016)C.(-2019,-2016)D.(-∞,-2019)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,矩形ABCD中,AB=2AD=4,MN=2PQ=2,向該矩形內(nèi)隨機(jī)投一質(zhì)點(diǎn),則質(zhì)點(diǎn)落在四邊形MNQP內(nèi)的概率為( 。
A.$\frac{1}{3}$B.$\frac{3}{8}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知某個(gè)幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸(單位:cm),可得這個(gè)幾何體的體積是( 。
A.$\frac{4}{3}$cm3B.$\frac{8}{3}$cm3C.2cm3D.4cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.2016年9月,第22屆魯臺(tái)經(jīng)貿(mào)洽談會(huì)在濰坊魯臺(tái)會(huì)展中心舉行,在會(huì)展期間某展銷(xiāo)商銷(xiāo)售一種商品,根據(jù)市場(chǎng)調(diào)查,每件商品售價(jià)x(元)與銷(xiāo)量t(萬(wàn)元)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷(xiāo)量呈反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤(rùn)=售價(jià)-供貨價(jià)格)
(1)求售價(jià)15元時(shí)的銷(xiāo)量及此時(shí)的供貨價(jià)格;
(2)當(dāng)銷(xiāo)售價(jià)格為多少時(shí)總利潤(rùn)最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.等差敗列{an}的前n項(xiàng)和為Sn,若a3+a16=10,則S18=( 。
A.50B.90C.100D.190

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如果直線(xiàn)l1:x+ax+1=0和直線(xiàn)l2:ax+y+1=0垂直,則實(shí)數(shù)a的值為(  )
A.±1B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=$\frac{|x|}{\sqrt{1+{x}^{2}}\sqrt{4+{x}^{2}}}$的最大值為$\frac{1}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案