在平面直角坐標系xOy中,拋物線C的頂點在原點,焦點F的坐標為(1,0).

(1)求拋物線C的標準方程;

(2)設M、N是拋物線C的準線上的兩個動點,且它們的縱坐標之積為-4,直線MO、NO與拋物線的交點分別為點A、B,求證:動直線AB恒過一個定點.

 

(1)y2=4x(2)見解析

【解析】(1)設拋物線的標準方程為y2=2px(p>0),則=1,p=2,所以拋物線方程為y2=4x.

(2)拋物線C的準線方程為x=-1,設M(-1,y1),N(-1,y2),其中y1y2=-4,直線MO的方程:y=-y1x,將y=-y1x與y2=4x聯(lián)立解得A點坐標.同理可得B點坐標,則直線AB的方程為:,整理得(y1+y2)y-4x+4=0,故直線AB恒過定點(1,0).

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第5課時練習卷(解析版) 題型:填空題

已知直線l過點(-2,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:解答題

求直線a:2x+y-4=0關于直線l:3x+4y-1=0對稱的直線b的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第3課時練習卷(解析版) 題型:填空題

已知直線l:y=3x+3,那么直線x-y-2=0關于直線l對稱的直線方程為____________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,一條準線方程為x=

(1)求橢圓C的方程;

(2)設G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.

①當直線OG的傾斜角為60°時,求△GOH的面積;

②是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

如圖,已知梯形ABCD中|AB|=2|CD|,點E滿足=λ,雙曲線過C、D、E三點,且以A、B為焦點.當≤λ≤時,求雙曲線離心率e的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:填空題

已知橢圓C:+y2=1的兩焦點為F1,F(xiàn)2,點P(x0,y0)滿足≤1,則PF1+PF2的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

如圖,F(xiàn)是中心在原點、焦點在x軸上的橢圓C的右焦點,直線l:x=4是橢圓C的右準線,F(xiàn)到直線l的距離等于3.

(1)求橢圓C的方程;

(2)點P是橢圓C上動點,PM⊥l,垂足為M.是否存在點P,使得△FPM為等腰三角形?若存在,求出點P的坐標;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練文數(shù)學卷(解析版) 題型:填空題

平面向量的夾角為,_______.

 

查看答案和解析>>

同步練習冊答案