已知等差數(shù)列{an}的公差為d,關(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],則使數(shù)列{an}的前n項(xiàng)和Sn取最大值的正整數(shù)n的值是
5
5
分析:由題意易得d<0,an=(n-
11
2
)d,令(n-
11
2
)d≤0,可得等差數(shù)列{an}的前5項(xiàng)為正,從第6項(xiàng)開始為負(fù),從而可得答案.
解答:解:因?yàn)殛P(guān)于x的不等式dx2+2a1x≥0的解集為[0,9],
所以d<0,且81d+18a1=0,解得a1=-
9
2
d
,
故an=a1+(n-1)d=(n-
11
2
)d,
令(n-
11
2
)d≤0,(注意d<0),解得n≥
11
2
,
即等差數(shù)列{an}的前5項(xiàng)為正,從第6項(xiàng)開始為負(fù),
故數(shù)列{an}的前5項(xiàng)和S5取最大,
故答案為:5
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和的最值問題,涉及一元二次不等式的解集,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊答案