16.已知函數(shù)$f(x)=\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設m>0,求f(x)在[m,2m]上的最大值.

分析 (1)確定函數(shù)的定義域,求導函數(shù),由導數(shù)的正負明確的函數(shù)的單調(diào)區(qū)間;
(2)分類討論極值點與區(qū)間[m,2m]的位置關系,從而確定函數(shù)f(x)在[m,2m]上的單調(diào)性,即可求函數(shù)的最大值.

解答 解:(1)函數(shù)的定義域為(0,+∞)
求導函數(shù),可得f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,而x>0,可得0<x<e,
令f′(x)<0,可得x>e,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e),單調(diào)遞減區(qū)間為(e,+∞);
(2)①當0<2m≤e,即0<m≤$\frac{e}{2}$時,由(1)知,函數(shù)f(x)在[m,2m]上單調(diào)遞增,
∴f(x)max=f(2m)=$\frac{ln(2m)}{2m}$,
②當m≥e時,由(1)知,函數(shù)f(x)在[m,2m]上單調(diào)遞減,
∴f(x)max=f(m)=$\frac{lnm}{m}$,
③當m<e<2m,即$\frac{e}{2}$<m<e時,由(1)知,函數(shù)f(x)在[m,e]上單調(diào)遞增,(e,2m]上單調(diào)遞減,
∴f(x)max=f(e)=$\frac{1}{e}$.

點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,利用導數(shù)求函數(shù)的最值,對于利用導數(shù)研究函數(shù)的單調(diào)性,注意導數(shù)的正負對應著函數(shù)的單調(diào)性.利用導數(shù)研究函數(shù)問題時,經(jīng)常會運用分類討論的數(shù)學思想方法.屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.已知A,B是橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右頂點,M是E上不同于A,B的任意一點,若直線AM,BM的斜率之積為-$\frac{4}{9}$,則E的離心率為( 。
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{2}{3}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知(x2+2x+2)5=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,則$\sum_{i=1}^{10}{a}_{i}$的值為31.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{{a}_{n}+1}$.(n∈N*
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設bn=$\frac{1}{{2}^{n}•{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某班從6名班干部(其中男生4人,女生2人)中,任選3人參加學校的義務勞動.
(1)設所選3人中女生人數(shù)為X,求X的分布列及期望;
(2)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B|A).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.解不等式:x2-5ax+6a2>0,a≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.對任意實數(shù)x,矩陣$[\begin{array}{l}{x}&{2+m}\\{3-m}&{3}\end{array}]$總存在特征向量,則m的取值范圍是[-2,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)當x>1時,證明:$\frac{2}{3}$x3>$\frac{1}{2}$x2+lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x3+ax2+c,當x=-1時,f(x)的極大值為7;當x=3時,f(x)有極小值.
(I)求a,b,c的值;
(Ⅱ)求f(x)在[-2,4]上的最小值.

查看答案和解析>>

同步練習冊答案