【題目】已知數(shù)列是遞減的等差數(shù)列,的前項(xiàng)和是,且,有以下四個(gè)結(jié)論:
①;
②若對任意都有成立,則的值等于7或8時(shí);
③存在正整數(shù),使;
④存在正整數(shù),使.
其中所有正確結(jié)論的序號是
A. ①②B. ①②③
C. ②③④D. ①②③④
【答案】D
【解析】
由S6=S9,得到a7+a8+a9=0,利用等差數(shù)列的性質(zhì)化簡,得到a8=0,進(jìn)而得到選項(xiàng)①正確;再由數(shù)列{an}是遞減的等差數(shù)列以及a8=0,可得出當(dāng)n等于7或8時(shí),sn取最大值,選項(xiàng)②正確;利用等差數(shù)列的前n項(xiàng)和公式表示出S15,利用等差數(shù)列的性質(zhì)化簡后,將a8的值代入可得出S15=0,故存在正整數(shù)k,使Sk=0,選項(xiàng)③正確;當(dāng)m=5時(shí),表示出S10-S5,利用等差數(shù)列的性質(zhì)化簡后,將a8=0代入可得出S10-S5=0,即S10=S5 ,故存在正整數(shù)m,使Sm=S2m,選項(xiàng)④正確.
,,
由等差數(shù)列的性質(zhì),可得,,故結(jié)論①正確;
數(shù)列是遞減的等差數(shù)列,,
當(dāng)的值等于7或8時(shí),取得最大值,故結(jié)論②正確;
又,則,存在正整數(shù)時(shí),使,故結(jié)論③正確;
由等差數(shù)列的性質(zhì),可得,
存在正整數(shù),使,故結(jié)論④正確.
故所有正確結(jié)論的序號是①②③④.故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如下圖所示:
(1)將去年的消費(fèi)金額超過 3200 元的消費(fèi)者稱為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機(jī)抽取 2 人,求至少有 1 位消費(fèi)者,其去年的消費(fèi)金額超過 4000 元的概率;
(2)針對這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會(huì)制,詳情如下表:
會(huì)員等級 | 消費(fèi)金額 |
普通會(huì)員 | 2000 |
銀卡會(huì)員 | 2700 |
金卡會(huì)員 | 3200 |
預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會(huì)申請辦理普通會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請辦理銀卡會(huì)員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會(huì)申請辦理金卡會(huì)員. 消費(fèi)者在申請辦理會(huì)員時(shí),需-次性繳清相應(yīng)等級的消費(fèi)金額.該健身機(jī)構(gòu)在今年底將針對這些消費(fèi)者舉辦消費(fèi)返利活動(dòng),現(xiàn)有如下兩種預(yù)設(shè)方案:
方案 1:按分層抽樣從普通會(huì)員, 銀卡會(huì)員, 金卡會(huì)員中總共抽取 25 位“幸運(yùn)之星”給予獎(jiǎng)勵(lì): 普通會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 500 元; 銀卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 600 元; 金卡會(huì)員中的“幸運(yùn)之星”每人獎(jiǎng)勵(lì) 800 元.
方案 2:每位會(huì)員均可參加摸獎(jiǎng)游戲,游戲規(guī)則如下:從-個(gè)裝有 3 個(gè)白球、 2 個(gè)紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個(gè)球.若摸到紅球的總數(shù)消費(fèi)金額/元為 2,則可獲得 200 元獎(jiǎng)勵(lì)金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎(jiǎng)勵(lì)金;其他情況不給予獎(jiǎng)勵(lì). 規(guī)定每位普通會(huì)員均可參加 1 次摸獎(jiǎng)游戲;每位銀卡會(huì)員均可參加 2 次摸獎(jiǎng)游戲;每位金卡會(huì)員均可參加 3 次摸獎(jiǎng)游戲(每次摸獎(jiǎng)的結(jié)果相互獨(dú)立) .
以方案 2 的獎(jiǎng)勵(lì)金的數(shù)學(xué)期望為依據(jù),請你預(yù)測哪-種方案投資較少?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,,,,△是等邊三角形,分別為的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)若二面角的大小為,求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)在軸上,中心在坐標(biāo)原點(diǎn),長軸長為4,短軸長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過的直線,使得直線與橢圓交于,?若存在,請求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知(是虛數(shù)單位)是關(guān)于的方程的根,、,求的值;
(2)已知(是虛數(shù)單位)是關(guān)于的方程的一個(gè)根,、,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面,底面為正方形,,點(diǎn)為正方形內(nèi)部的一點(diǎn),且,則直線與所成角的余弦值的取值范圍為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列有關(guān)命題的說法正確的是( )
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“若x=y,則sin x=sin y”的逆否命題為真命題
D.命題“x0∈R使得”的否定是“x∈R,均有x2+x+1<0”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com