【題目】已知橢圓的左、右焦點(diǎn)軸上,中心在坐標(biāo)原點(diǎn),長軸長為4,短軸長為.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在過的直線,使得直線與橢圓交于,?若存在,請求出直線的方程;若不存在,請說明理由.

【答案】12)存在;直線

【解析】

1)由長軸和短軸可得,從而得橢圓方程;

2)當(dāng)直線的斜率不存在時(shí),不滿足條件;假設(shè)存在斜率存在的過點(diǎn)的直線,使得直線與橢圓交于,設(shè),設(shè)直線的方程為,與橢圓方程聯(lián)立,消元后應(yīng)用韋達(dá)定理得,說明,代入可求得,得直線方程.

解:(1)設(shè)橢圓的方程為,

可得,即,

所以橢圓的方程為

2)當(dāng)直線的斜率不存在時(shí),不滿足條件;

假設(shè)存在過點(diǎn)的直線,使得直線與橢圓交于,

設(shè)直線的方程為,聯(lián)立橢圓的方程得,

設(shè),

,即,

,化為,

,

化為,解得,

所在存在直線滿足條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,,、、分別為矩形四條邊的中點(diǎn),以所在直線分別為,軸建立直角坐標(biāo)系(如圖所示).若、分別在線段、上.且.

(Ⅰ)求證:直線的交點(diǎn)總在橢圓上;

(Ⅱ)若、為曲線上兩點(diǎn),且直線與直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(2)設(shè)點(diǎn)的極坐標(biāo)為,點(diǎn)在曲線上,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為常數(shù),且,

(I)若方程有唯一實(shí)數(shù)根,求函數(shù)的解析式.

(II)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值.

(III)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是遞減的等差數(shù)列,的前項(xiàng)和是,且,有以下四個(gè)結(jié)論

若對任意都有成立,則的值等于78時(shí);

存在正整數(shù),使;

存在正整數(shù),使

其中所有正確結(jié)論的序號(hào)是

A. ①②B. ①②③

C. ②③④D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),且曲線處的切線與軸平行.

1)求的值;

2)求的單調(diào)區(qū)間;

3)若,試比較1的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)ae2x+(a﹣2) exx.

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列1,1,2,12,41,24,81,2,48,16,…,其中第一項(xiàng)是,接下來的兩項(xiàng)是,再接下來的三項(xiàng)是,,依此類推,若該數(shù)列前項(xiàng)和滿足:①2的整數(shù)次冪,則滿足條件的最小的

A. 21B. 91C. 95D. 10

查看答案和解析>>

同步練習(xí)冊答案