設離心率的橢圓的左、右焦點分別為F1、F2,P是x軸正半軸上一點,以PF1為直徑的圓經(jīng)過橢圓M短軸端點,且該圓和直線相切,過點P的直線與橢圓M相交于相異兩點A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點A、B關于x軸對稱,直線BC交x軸與點Q,求的取值范圍.
【答案】分析:(Ⅰ)設以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點N,則|NF1|=a,由可得a=2c,由此可得,再由|PF1|的長可判斷F2為圓的圓心,根據(jù)圓與直線相切,可解得c值,從而可求得a,b;
(Ⅱ)設點A(x1,y1),C(x2,y2),易知點B(x1,-y1),設直線PA的方程為y=k(x-3),代入橢圓方程消掉y得x的二次方程,由△>0得k2范圍,由點斜式寫出直線BC的方程,令y=0,由韋達定理可得Q點橫坐標,利用向量數(shù)量積運算及韋達定理可把表示為k的函數(shù),由k2的范圍即可求得的范圍;
解答:解:(Ⅰ)設以|PF1|為直徑的圓經(jīng)過橢圓M短軸端點N,
∴|NF1|=a,∵,∴a=2c,
,|PF1|=2a.
∴F2(c,0)是以|PF1|為直徑的圓的圓心,
∵該圓和直線相切,
,解得,
∴橢圓M的方程為:
(Ⅱ)設點A(x1,y1),C(x2,y2),則點B(x1,-y1),
設直線PA的方程為y=k(x-3),
聯(lián)立方程組,消掉y,化簡整理得(4k2+3)x2-24k2x+36k2-12=0,
由△=(24k22-4•(3+4k2)•(36k2-12)>0,得

直線BC的方程為:,
令y=0,則
∴Q點坐標為

=
=
=
,

點評:本題考查直線、橢圓方程及其位置關系,考查向量的數(shù)量積運算,考查函數(shù)思想,考查學生分析解決問題的能力,綜合性強,難度較大,對能力要求較高.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•大連一模)設離心率e=
1
2
的橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,P是x軸正半軸上一點,以PF1為直徑的圓經(jīng)過橢圓M短軸端點,且該圓和直線x+
3
y+3=0
相切,過點P直線橢圓M相交于相異兩點A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點A、B關于x軸對稱,直線BC交x軸與點Q,求Q點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•鄭州二模)已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與離心率e>
1
2
的橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的其中一個公共點為A(3,l),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點.
(I)求圓C的標準方程;
(II)若點P的坐標為(4,4),試探究直線PF1與圓C能否相切?若能,設直線PF1與橢圓E相交于A,B兩點,求△ABF2的面積;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省高考真題 題型:解答題

已知橢圓(a>b>0)的離心率為,以原點為圓心,橢圓短半軸長半徑的圓與直線y=x+2相切,
(Ⅰ)求a與b;
(Ⅱ)設該橢圓的左,右焦點分別為F1和F2,直線l1過F2且與x軸垂直,動直線l2與y軸垂直,l2交l1于點P,求線段PF1垂直平分線與l2的交點M的軌跡方程,并指明曲線類型。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省大連市高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

設離心率的橢圓的左、右焦點分別為F1、F2,P是x軸正半軸上一點,以PF1為直徑的圓經(jīng)過橢圓M短軸端點,且該圓和直線相切,過點P直線橢圓M相交于相異兩點A、C.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若相異兩點A、B關于x軸對稱,直線BC交x軸與點Q,求Q點坐標.

查看答案和解析>>

同步練習冊答案