(1)若,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)若,滿足不等式,求實(shí)數(shù)的取值范圍.

 

【答案】

解:(1)顯然當(dāng)時(shí),不符合題意;

由題意得,即

解得實(shí)數(shù)的取值范圍為

(2)當(dāng)時(shí),不等式為符合題意;

當(dāng)時(shí),由二次函數(shù)的性質(zhì),可知符合題意;

當(dāng)時(shí),由題意得,

解得

綜上得實(shí)數(shù)的取值范圍為

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島一模)已知函數(shù)f(x)=
1
3
x3-x

(1)若不等式f(x)<k-2005對于x∈[-2,3]恒成立,求最小的正整數(shù)k;
(2)令函數(shù)g(x)=f(x)-
1
2
ax2+x(a≥2)
,求曲線y=g(x)在(1,g(1))處的切線與兩坐標(biāo)軸圍成的三角形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選做題(請考生在下列兩題中任選一題作答,若兩題都做,則按做的第一題評閱計(jì)分)
(1)(極坐標(biāo)與參數(shù)方程)在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=-
2
+rcosθ
y=-
2
+rsinθ
(θ為參數(shù),r>0).以O(shè)為極點(diǎn),x軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+
π
4
)=1
.當(dāng)圓C上的點(diǎn)到直線l的最大距離為4時(shí),圓的半徑r=
1
1

(2)(不等式)對于任意實(shí)數(shù)x,不等式|2x+m|+|x-1|≥a恒成立時(shí),若實(shí)數(shù)a的最大值為3,則實(shí)數(shù)m的值為
4或-8
4或-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•濰坊一模)若不等式|x-2|+|x-3|>|k-1|對任意的x∈R恒成恒成立,則實(shí)數(shù)k的取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+bx+c
x+d
(其中a,b,c,d是實(shí)數(shù)常數(shù),x≠-d)
(1)若a=0,函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,3)成中心對稱,求b,d的值;
(2)若函數(shù)f(x)滿足條件(1),且對任意x0∈[3,10],總有f(x0)∈[3,10],求c的取值范圍;
(3)若b=0,函數(shù)f(x)是奇函數(shù),f(1)=0,f(-2)=-
3
2
,且對任意x∈[1,+∞)時(shí),不等式f(mx)+mf(x)恒成立,求負(fù)實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省宜春市高三模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

 (1)(極坐標(biāo)與參數(shù)方程)在直角坐標(biāo)系中,圓的參數(shù)方程為 為參數(shù),.以為極點(diǎn),軸正半軸為極軸,并取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.當(dāng)圓上的點(diǎn)到直線的最大距離為時(shí),圓的半徑           

(2)(不等式)對于任意實(shí)數(shù),不等式恒成立時(shí),若實(shí)數(shù)的最大值為3,則實(shí)數(shù)的值為            

 

查看答案和解析>>

同步練習(xí)冊答案