已知點P是雙曲線
x2
a2
-
y2
b2
=1
(a,b>0)右支上一點,F(xiàn)1,F(xiàn)2分別是雙曲線的左、右焦點,I為PF1F2的內(nèi)心,若S△IPF1=S△IPF2+λS△IF1F2成立,則λ的值為( 。
A、
a
c
B、
c
a
C、
b
a
D、
a
b
分析:先由S△IPF1=S△IPF2+λS△IF1F2得|PF1=|PF2|+λ|F1F2|=|PF2|+λ•2c,再由P是右支上的點,得到|PF1|=|PF2|+2a,由此能夠求出λ的值.
解答:解:設(shè)△PF1F2的內(nèi)切圓半徑為r,由雙曲線的定義得|PF1|-|PF2|=2a,|F1F2|=2c,
S△IPF1=
1
2
|PF1|•r,S△IPF1=
1
2
|PF2|•r,S△I F1F2=
1
2
•2c•r=c
由題意得
1
2
|PF1|•r=
1
2
|PF2|•r+λcr,故 λ=|PF1|-|PF2|2c=
a
c
,
故選 A.
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,注意公式的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點F是雙曲線x2-
y2
2
=1
的一個焦點,過點F作直線l交雙曲線于兩點P、Q,若|PQ|=4,則這樣的直線l有且僅有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)和圓x2+y2=a2+b2
的一個交點,F(xiàn)1,F(xiàn)2是該雙曲線的兩個焦點,∠PF2F1=2∠PF1F2,則該雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•揚州三模)已知點P是雙曲線x2-y2=2上的點,該點關(guān)于實軸的對稱點為Q,則
OP
OQ
=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P在雙曲線x2-y2=1的右支上,且點P到直線y=x的距離為,則點P的坐標(biāo)是_________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省揚州市高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

已知點P是雙曲線x2-y2=2上的點,該點關(guān)于實軸的對稱點為Q,則=   

查看答案和解析>>

同步練習(xí)冊答案