分析 先進行數(shù)量積的坐標(biāo)運算,從而由$\overrightarrow{m}•\overrightarrow{n}=0$可以得出y=$(2cosx+2\sqrt{3}sinx)cosx$,然后根據(jù)二倍角的正余弦公式及兩角和的正弦公式可以對前面函數(shù)解析式進行化簡,化簡后便可得到y(tǒng)=2sin(2x$+\frac{π}{6}$)+1,顯然可以得出周期.
解答 解:$\overrightarrow{m}•\overrightarrow{n}=(2cosx+2\sqrt{3}sinx)cosx-y=0$;
∴$y=(2cosx+2\sqrt{3}sinx)cosx$=$2co{s}^{2}x+2\sqrt{3}sinxcosx$=$1+cos2x+\sqrt{3}sin2x$=$2sin(2x+\frac{π}{6})+1$;
即y=$2sin(2x+\frac{π}{6})+1$;
∴f(x)的最小正周期為π.
點評 考查數(shù)量積的坐標(biāo)運算,二倍角的正弦、余弦公式,以及兩角和的正弦公式,計算最小正周期的公式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2015,2015] | B. | [-2014,2016] | ||
C. | (-∞,2014]∪[2016,+∞) | D. | (-∞,-2016]∪[2014,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,0)∪(0,1) | B. | (-1,0)∪(0,1] | C. | (0,1) | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 減函數(shù) | C. | 先減后增 | D. | 先增后減 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{1}{\sqrt{x}}$ | B. | f(x)=$\sqrt{x}$ | C. | f(x)=|x| | D. | f(x)=2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.3 | B. | 2.4 | C. | 2.5 | D. | 2.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com