(本題滿分12分) 如圖,有一塊矩形空地,要在這塊空地上辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=(>2),BC=2,且AE=AH=CF=CG,設(shè)AE=,綠地面積為.
(1)寫出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積最大? (10分)
(1)y=-2x2+(+2)x,(0<x≤2) ;
(2)當(dāng)<6時(shí),AE=時(shí),綠地面積取最大值
當(dāng)≥6時(shí),AE=2時(shí),綠地面積取最大值2-4。
解析試題分析:(1)先求得四邊形ABCD,△AHE的面積,再分割法求得四邊形EFGH的面積,即建立y關(guān)于x的函數(shù)關(guān)系式;
(2)由(1)知y是關(guān)于x的二次函數(shù),用二次函數(shù)求最值的方法求解.
解:(1)SΔAEH=SΔCFG=x2, SΔBEF=SΔDGH=(-x)(2-x)
∴y=SABCD-2SΔAEH-2SΔBEF=2-x2-(-x)(2-x)=-2x2+(+2)x
∴y=-2x2+(+2)x,(0<x≤2) (4分)
(2)當(dāng),即<6時(shí),則x=時(shí),y取最大值
當(dāng)≥2,即≥6時(shí),y=-2x2+(+2)x,在0,2]上是增函數(shù),
則x=2時(shí),y取最大值2-4
綜上所述:當(dāng)<6時(shí),AE=時(shí),綠地面積取最大值
當(dāng)≥6時(shí),AE=2時(shí),綠地面積取最大值2-4。
考點(diǎn):本試題主要考查了實(shí)際問題中的建模和解模能力,注意二次函數(shù)求最值的方法.
點(diǎn)評(píng):解決該試題的關(guān)鍵是運(yùn)用間接法,分割的思想來得到四邊形EFGH的面積,從而建立關(guān)于x的函數(shù)關(guān)系式,運(yùn)用該函數(shù)的思想求解最值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
定義在上的奇函數(shù),已知當(dāng)時(shí),
(1)寫出在上的解析式
(2)求在上的最大值
(3)若是上的增函數(shù),求實(shí)數(shù)的范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的最小值;
(Ⅱ)若對(duì)任意,恒成立,試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知:函數(shù)y=f (x)的定義域?yàn)镽,且對(duì)于任意的a,b∈R,都有f (a+b)=f (a)+f (b),且當(dāng)x>0時(shí),f (x)<0恒成立.
證明:(1)函數(shù)y=f (x)是R上的減函數(shù).
(2)函數(shù)y=f (x)是奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分15分)已知在定義域上是奇函數(shù),且在上是減函數(shù),圖像如圖所示.
(1)化簡(jiǎn):;
(2)畫出函數(shù)在上的圖像;
(3)證明:在上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=ax2+bx+c的圖象過原點(diǎn)(-1,0),是否存在常數(shù)a、b、c,使不等式x≤f(x) ≤對(duì)一切實(shí)數(shù)x均成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)已知().
(1)判斷函數(shù)的奇偶性,并證明;
(2)若,用單調(diào)性定義證明函數(shù)在區(qū)間上單調(diào)遞減;
(3)是否存在實(shí)數(shù),使得的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/2/172rn4.png" style="vertical-align:middle;" />時(shí),值域?yàn)?br />,若存在,求出實(shí)數(shù)的取值范圍;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)經(jīng)市場(chǎng)調(diào)查,某種商品在過去50天的銷售量和價(jià)格均為銷售時(shí)間t(天)的函數(shù),已知前30天價(jià)格為,后20天價(jià)格為f(t)="45" (31£ t £50, tÎN),且銷售量近似地滿足g(t)=" -2t+200" (1£t£50, tÎN).
(I)寫出該種商品的日銷售額S與時(shí)間t的函數(shù)關(guān)系式;
(II)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)定義域都為的兩個(gè)函數(shù)的解析式分別為,
(1)求函數(shù)的值域;
(2)求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com