若對(duì)x∈R恒有>n(n∈N),試求n的值.

解:原不等式-n>0>0.

    由題意得原不等式的解集為R,

    又x2+x+1恒正,

    故(3-n)x2+(2-n)x+(2-n)>0的解集為R.∴

    即

    解之得n=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意的m,n∈R,都有f(m+n)=f(m)+f(n),并且x>0時(shí)恒有f(x)>0
(1)求證:f(x)在R上是增函數(shù)
(2)若f(k•3x)+f(3x-9x-2)<0對(duì)?x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)對(duì)任意的m,n∈R,都有f(m+n)=f(m)+f(n),并且x>0時(shí)恒有f(x)>0
(1)求證:f(x)在R上是增函數(shù)
(2)若f(k•3x)+f(3x-9x-2)<0對(duì)?x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)對(duì)任意的m,n∈R,都有f(m+n)=f(m)+f(n),并且x>0時(shí)恒有f(x)>0
(1)求證:f(x)在R上是增函數(shù)
(2)若f(k•3x)+f(3x-9x-2)<0對(duì)?x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年黑龍江省鶴崗一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知函數(shù)f(x)對(duì)任意的m,n∈R,都有f(m+n)=f(m)+f(n),并且x>0時(shí)恒有f(x)>0
(1)求證:f(x)在R上是增函數(shù)
(2)若f+f(3x-9x-2)<0對(duì)?x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案