3.設(shè)a為正實(shí)數(shù),i為虛數(shù)單位,z=1-ai,若|z|=2,則a=$\sqrt{3}$.

分析 根據(jù)復(fù)數(shù)模的求法列出關(guān)于a的方程,通過(guò)解方程求得a的值即可.

解答 解:依題意得:$\sqrt{{1}^{2}+(-a)^{2}}$=2,且a>0,
解得a=$\sqrt{3}$.
故答案是:$\sqrt{3}$.

點(diǎn)評(píng) 本題主要考查復(fù)數(shù)模長(zhǎng)的計(jì)算,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知向量|$\overrightarrow{a}$|=2,$\overrightarrow$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),且 $\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{2π}{3}$,
(1)求|$\overrightarrow{a}$+2$\overrightarrow$|;
(2)若($\overrightarrow{a}$+k$\overrightarrow$)⊥(2$\overrightarrow$-$\overrightarrow{a}$),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知復(fù)數(shù)z滿足($\sqrt{3}$+3i)z=3i,則z等于( 。
A.$\frac{3}{2}$-$\frac{\sqrt{3}}{2}$iB.$\frac{3}{4}$-$\frac{\sqrt{3}}{4}$iC.$\frac{3}{2}$+$\frac{\sqrt{3}}{2}$iD.$\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐S-ABCD中,SA⊥平面ABCD,底面ABCD為直角梯形,AD∥BC,∠ABC=90°,SA=AB=AD=1,BC=2.
(1)求異面直線BC與SD所成角的大。
(2)求直線SC與平面SAB所成角的正切值;
(3)求三棱錐D-SBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.復(fù)數(shù)$z=\frac{2+mi}{1+i}(m∈R)$是實(shí)數(shù),則m=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$\overline z$是z的共軛復(fù)數(shù),且|z|-$\overline z$=3+4i,則z的虛部是( 。
A.$\frac{7}{6}$B.$-\frac{7}{6}$C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=cosx(2sinx+mcosx)的圖象經(jīng)過(guò)點(diǎn)P(π,-2$\sqrt{3}$).
(1)求m的值以及f($\frac{π}{6}$);
(2)函數(shù)f(x)的圖象向右平移$\frac{π}{6}$后得到函數(shù)g(x)的圖象,求g(x)在[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合A={z|z=i+i2+i3+…+in,n∈N*},B={z|z=z1•z2,z1∈A,z2∈A},則集合B中的元素共有7個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.定長(zhǎng)是3的線段AB的兩端點(diǎn)在拋物線y2=x上移動(dòng),M是線段AB的中點(diǎn),則M到y(tǒng)軸距離的最小值是$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案