已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)作出函數(shù)在一個周期內(nèi)的圖象.

【答案】分析:(1)先利用二倍角公式和兩角和的正弦公式,將函數(shù)f(x)化簡為y=Asin(ωx+φ)型函數(shù),最后利用周期計算公式求其周期,最后將內(nèi)層函數(shù)置于外層函數(shù)的單調(diào)增區(qū)間上即可解得函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將內(nèi)層函數(shù)看作整體,利用五點作圖法,先列表,再描點連線畫出函數(shù)在一個周期上的圖象
解答:解:(1)=
∴最小正周期為=π.
,則,
所以函數(shù)的單調(diào)遞增區(qū)間是
(2)列表
                0                       π                   2π
x
f(x)1-1
畫圖象如圖:
點評:本題主要考查了三角變換公式在化簡中的應用,y=Asin(ωx+φ)型函數(shù)的圖象和性質(zhì),五點作圖法畫函數(shù)圖象的方法,屬基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側的第一個最大值、最小值點分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點的橫坐標縮短到原來的
1
3
(縱坐標不變),然后再將所得圖象沿x軸負方向平移
π
3
個單位,最后將y=f(x)圖象上所有點的縱坐標縮短到原來的
1
2
(橫坐標不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù) (1)求函數(shù)在區(qū)間[1,]上的最大值、最小值;

(2)求證:在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方;

(3)設函數(shù),求證:。(

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年湖北省仙桃一中高三(上)第二次段考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標系中,用描點法畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省棗莊市高三上學期期末檢測理科數(shù)學 題型:解答題

(本題滿分12分)

已知函數(shù)

(1)求函數(shù)的極值點;

(2)若直線過點(0,—1),并且與曲線相切,求直線的方程;

(3)設函數(shù),其中,求函數(shù)上的最小值.(其中e為自然對數(shù)的底數(shù))

 

 

查看答案和解析>>

同步練習冊答案