分析 由正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,結(jié)合sinC≠0,sinB≠0,可求cosA=$\frac{1}{2}$,由余弦定理可得:b+c=$\sqrt{9+3bc}$,利用基本不等式可求9≥bc,進(jìn)而可求b+c的最大值.
解答 解:∵1+$\frac{tanA}{tanB}=\frac{2c}$,可得:1+$\frac{sinAcosB}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∴$\frac{sinC}{cosAsinB}$=$\frac{2sinC}{sinB}$,
∵C,B∈(0,π),sinC≠0,sinB≠0,
∴可得:cosA=$\frac{1}{2}$,
∵a=3,
∴由余弦定理可得:9=b2+c2-bc,
∴9=(b+c)2-3bc,可得:b+c=$\sqrt{9+3bc}$,
又∵9=b2+c2-bc≥2bc-bc=bc,當(dāng)且僅當(dāng)b=c時等號成立,
∴b+c=$\sqrt{9+3bc}$≤$\sqrt{9+9}$=3$\sqrt{2}$,當(dāng)且僅當(dāng)b=c時等號成立.
故b+c的最大值為3$\sqrt{2}$.
故答案為:3$\sqrt{2}$.
點(diǎn)評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{9}{2}$ | B. | $\frac{9}{2}$ | C. | $\frac{1}{4}$ | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1} | B. | {0,1,2} | C. | {-1,0,1,2} | D. | {-2,-1,0,1,2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | -1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-3,-2,-1} | B. | {-1,2,3} | C. | {-1,0,1,2,3} | D. | {0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {m|m<-2或m>2} | B. | {m|-2<m<2} | C. | {m|m<0或m>4} | D. | {m|0<m<4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com