分析 如圖所示,連接A1C1,與B1D1交于E,取AA1的中點F,連接EF,證明AC1∥平面B1D1F,再進行求解即可.
解答 解:如圖所示,連接A1C1,與B1D1交于E,取AA1的中點F,連接EF,
則EF∥AC1,易知AC1⊥平面A1DB,∴EF⊥平面A1DB,EF⊥平面A1DB.
∵EF?面B1D1F,∴△B1D1F為平面α截該正方體所得截面,∴在△B1D1F中,B1D1=2$\sqrt{2}$,EF=$\sqrt{3}$,B1D1⊥EF,
∴平面α截該正方體所得截面的面積為$\frac{1}{2}×2\sqrt{2}×\sqrt{3}=\sqrt{6}$.
故答案為:$\sqrt{6}$.
點評 本題考查面面垂直的判定,考查三角形面積的計算,正確判定面面垂直是關(guān)鍵.屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | ≥5次 |
收費比例 | 1 | 0.95 | 0.90 | 0.85 | 0.80 |
消費次第 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
頻數(shù) | 60 | 20 | 10 | 5 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{3}$ | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com