7.直線y=kx+1和雙曲線3x2-y2=1相交,交點(diǎn)為A、B,當(dāng)k為何值時(shí),以弦AB為直徑的圓過坐標(biāo)原點(diǎn).

分析 把直線方程與雙曲線的方程聯(lián)立可得△>0,解出k的范圍.利用向量垂直與數(shù)量積的關(guān)系、根與系數(shù)的關(guān)系即可得出.

解答 解:設(shè)交點(diǎn)A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{y=kx+1}\\{3{x}^{2}-{y}^{2}=1}\end{array}\right.$消去y,得(3-k2)x2-2kx-2=0,
由于直線與雙曲線相交,∴$\left\{\begin{array}{l}{3-{k}^{2}≠0}\\{△=4{k}^{2}+8(3-{k}^{2})>0}\end{array}\right.$,∴k2<6且k2≠3.
∴k的取值范圍為-$\sqrt{6}$<k<$\sqrt{6}$,且k≠±$\sqrt{3}$.
由韋達(dá)定理,得x1+x2=$\frac{2k}{3-{k}^{2}}$,①x1x2=$\frac{-2}{3-{k}^{2}}$,②
∵以AB為直徑的圓恰好過坐標(biāo)系的原點(diǎn),
∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=0,
即x1x2+(kx1+1)(kx2+1)=0,整理得(k2+1)x1x2+k(x1+x2)+1=0③
將①②代入③,并化簡得$\frac{1-{k}^{2}}{3-{k}^{2}}$=0,∴k=±1,
經(jīng)檢驗(yàn),k=±1滿足題目條件,
故存在實(shí)數(shù)k滿足題目條件.

點(diǎn)評(píng) 本題考查了直線與雙曲線相交轉(zhuǎn)化為方程聯(lián)立可得△>0及根與系數(shù)的關(guān)系、圓的性質(zhì)、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.《九章算術(shù)》是我國古代數(shù)學(xué)名著,也是古代東方數(shù)學(xué)的代表作.書中有如下問題:“今有勾五步,股十二步,問勾中容方幾何?”其意思為:“已知直角三角形兩直角邊長分別為5步和12步,問其內(nèi)接正方形邊長為多少步?”現(xiàn)若向此三角形內(nèi)投豆子,則落在其內(nèi)接正方形內(nèi)的概率是( 。
A.$\frac{60}{289}$B.$\frac{90}{289}$C.$\frac{120}{289}$D.$\frac{240}{289}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,若sin2(B+C)+cos2B+cos2C+sinBsinC≥2,則角A的取值范圍是(  )
A.$(0,\frac{π}{6}]$B.$[\frac{π}{3},\frac{π}{2}]$C.$(0,\frac{π}{3}]$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知各項(xiàng)都為正數(shù)的數(shù)列{an}滿足a1=1,an2-(2an-1-1)an-2an-1=0(n≥2,n∈N*),數(shù)列{bn}滿足b1=1,b1+$\frac{1}{2}$b2+$\frac{1}{3}$b3+…+$\frac{1}{n}$bn=bn+1-1(n∈N*
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an•bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知空間幾何體CBEADF如圖所示,底面AEFD為矩形,平面BEFC⊥平面AEFD,∠CFE=∠BEF=90°,其中AE+BE=AD=2,DF+CF=4.
(1)若AE=1,G為棱CF上靠近點(diǎn)F的三等分點(diǎn),證明:DG∥平面ABC;
(2)當(dāng)VE-ABF=$\frac{1}{3}$時(shí),求直線BF與CA所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.把-1485°化為α+2kπ(k∈Z,0≤α≤2π)的形式是(  )
A.$\frac{π}{4}$-8πB.-$\frac{7}{4}$π-8πC.-$\frac{π}{4}$-10πD.-10π+$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$sin(2x+\frac{π}{6})$(x∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間$[{-\frac{π}{6},\frac{π}{6}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=a|x-2|+x.
(1)若函數(shù)f(x)有最大值,求a的取值范圍;
(2)若a=1,求不等式f(x)>|2x-3|的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果執(zhí)行下面的框圖,當(dāng)m=7,n=3時(shí),輸出的S值為( 。 
A.7B.42C.210D.840

查看答案和解析>>

同步練習(xí)冊(cè)答案